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ABSTRACT - The work described in this paper is part of a strategy to investigate useful
architectures of paralle! computation which encode speech knowledge into a speech recog-
nition system to optimise its performance. At the first level of the system, phonetic features
( an extended set of Jakobson et al's distinctive features ) are extracted from burst onset
intervals and pseudo-static vowel intervais of CVd words. Our resuit gives limited support to
the existence of invariant cues for some of these features.

INTRODUCTION

After 40 years of research the topic of speech recognition has yielded two main streams of approach.
On the one hand there is the knowledge-based pattern recognition approach in which general rules
governing the structure of speech are used to interpret the speech data and to classify the inherent
speech segments. On the other hand there is the data-driven pattern-matching or statistical approach in
which classification transforms or statistical models of the data are built from a set of training data and
then used to classify further speech data that were not a part of the training data.

The knowledge base for rule-based recognition has been accumulated over many decades of study in
phonetic and linguistic science, and other related areas. Valid techniques for the training of data-driven
approaches have been developed within the last decade and have achieved high levels of performance.
This indicates that there exists structure within speech data in the form of phonetically relevant cues
which are not adequately represented in the rule-based models. However the general tendency to use
data-driven systems which have an "ab initio” approach to learning their patterns appears 1o be an over
reaction.

The need to use speech knowledge in automatic speech recognition has been highlighted in the
literature. Zue (1985) concluded that the reason for the slow advance in the automatic recognition of
speech is due to the abandonment of phonetically based approaches in favour of the general pattern
matching technique. Huckvale (1390) proposed to encode the speech knowledge into the system’s
structure.

Within a generai paradigm of investigating architectures of parallel computation that may be optimised
for the recognition of speech, we have been investigating ways of encoding speech knowledge into
the system to enable better performance in the presence of the major "noise factors" for any model
of speech: speaker variability and the effect of coarticulation. It is also hoped that this paradigm of
enriching the system with speech knowledge will enable us to extend our interpretation of the models
which underlie the knowledge-base as they are exposed to processing a variety of real speech data.

Results of encoding some primary speech knowledge into the system were reported in Ran and Millar
(1991). In that paper we showed that pre-classification of speech into vocalic and non-vocalic, and
into dynamic and pseudo-static portions prior to attempting a data-driven pattern classification, enabled
enhanced classification performance. The present study extends that work using the same philosophy
of breaking down the speech according to its known sub-structure and creating simple sub-recognisers
which operate in parallel. The outputs of these sub-recognisers may subsequently be combiried.
Investigations of this post-processing are currently been carried out.

In this paper we create modules suitable for inclusion as sub-recognisers in a phoneme recognition
system. Each module is designed to recognise one phonetic feature. The definition of the set of features
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are mainly based on Jakobson et al (1961). Jakobson et al defined “distinctive features” on the bases
of speech production and acoustic spectral energy distribution. The features served as their unique
description of the speech sounds with the aim of providing an universal description of speech sounds
across languages. An example of the use of such features in determining the phonetic nature of a
segment of speech was illustrated by Blumstein and Stevens (1979) who reported that the invariant
cues for place of articuiation could be extracted from the beginning 26ms of a stop consonant release.
Their findings that these cues are represented by the gross shape of the spectrum correlate with some
of Jakobson et al's features.

The aim of the current feature exiraction experiments was to determine the feasibility of extraction of
some features described theoretically by Jakobson et al with some extensions, to see how well this
extraction could be applied across speakers, in order to apply it later as the first level of a modular
system of phoneme recognition .

SPEECH DATA CCRPUS AND ANALYSIS

We used [stopj[vwij{d] sounds as the speech material for our experiments. Where [stop] represents
the stop consonants, and [vwi] represents the eleven Austrafian nominally monophthongal vowels that
is: fstop-pt kb dglandvwik[iTe 2 a A D 2 ®u 3] We have four speakers and five
repetitions from each speaker speaking these [stopjfvwifd] sounds.

The data was hand segmented and iabeled. Each word was segmented into a Voice Bar interval (if
any), a burst onset interval, a transition intervai from the stop consonant fo the vowel, a pseudo-static
vowel interval, and a transition interval from vowe! to the final [d].

The criterion of segmentation based on visual inspection of the spectrograms of CVds is described
below:

o (For [Voiced stopjjvowelj[djwords) The starting point of the prevoicing; The indication of this point
is the presence of the voicing bar;

o End point of the prevoicing and starting point of the burst; the indication of this point is the ending
of the voicing bar or/and the starting of the broad-band noise;

« End point of the burst and starting point of the transition from the stop to vowel; the indication of
this point is the ending of the broad-band noise of high energy or the appearance of a relative
clear structure of formants;

« End point of the transitional portion and starting point of the pseudo-static portion of the vowel; the
indication of this point is the starting point of the relatively static formant structure;

o End point of the pseudo-static portion of the vowe! and the starting point of the transitional portion
from vowel to [d]; the indication of this point is the ending of the static formant structure and the
starting point of the dynamic formant structure;

o Starting paint of the [d] closure; the indication of this point is the absence of any formant energy
above and presence of the voicing bar for the [d].

The speech material used for this paper are the prevoicing interval, the burst onset interval, and the
pseudo-static portion of the vowel. The signal was passed through a Hamming window of frame-length
12.8ms, and then 13 Linear Predictive Cepstral Coefficients (LPCC) for each analysis frame were
calculated. This was repeated with 50% overlap between frames.

EXPERIMENT DESIGN
The definition of the set of phonetic features was mainly based on Jakobson et al (1961), with some
extensions. We defined the set of features having the task of phoneme classification of the speech

material ([stop]{vwi}{d])in mind, that is we included only the features which are useful for this classification
task. The set of features are ‘Acute’, ‘Compact’, ‘Diffuse’, ‘Flat', ‘Grave’, ‘Lax’, 'Non-Vocalic’, ‘Plain’,
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[ Feature Description
Acute Upper side of the spectrum predominates
Compact Relative predominance of one centrally located formant region (or formant)
Diffuse One or more non-central formants or formant regions predominate
Fiat A set of formants or even of all the formants in the spectrum shifts downward
Grave Lower side of spectrum predominates
Lax Shorter sound interval and lower energy comparing with Tense
Non-Vocalic | Having more than one periodic source whose onset is abrupt
Plain No shift of formants
Tense Longer sound interval and a larger energy comparing with Lax
Vocalic Having a single periodic source whose onset is not abrupt
Voice Bar Presence of low frequency spectral energy
Voiced Superposition of a harmonic sound source upon the noise source
Voiceless Having noise source only

Tabile 1: Brief Description of the Features

Tense’, ‘Vocalic', ‘Voice Bar', ‘Voiced’, and ‘Voiceless'. Each of the features is described briefly in Table
1.

For the design of the experiments of the extraction of the phonetic features , we take into account the
following points:

« Independency: At this level of the recognition system, we need the extraction of every individuai
feature to be as independent as possible.

» Performance: We need a design which gives us accuracy of exiraction for the test speaker to be
as high as possible.

As described in the introduction section, the system reported in this paper can be seen as the first level
of a phoneme recognition system. This part of the system comprises modules which are sub-recognisers
where each module is designed to recognise a single phonetic feature. Each module was implemented
as a Multi-Layer Perceptron (MLP){Rumelhart, Hinton and Williams 1986). Each MLP consists of several
layers of nodes : an input layer of 13 nodes, one or more hidden layers of variable number of nodes, and
one output layer of two or three nodes. Output layers with two nodes are used in MLPs which encode
evidence for the feature being ‘on’, and ‘off’, and those with three also encode evidence for the feature
being ‘irrelevant’. Fully-connected MLPs were used in which each node in one layer is connected to all
the nodes of the adjacent iayer. The selection of the number of hidden layers and the number of nodes
in these layers defines the architecture of the MLP.

Each module was first of all ‘trained’ in order to encode the evidence for its feature within its inter-node
weights, and then it was ‘tested’ by applying it in recognition mode to independent data. One speaker
was chosen at random to be the ‘test’ speaker, and the other three were used to provide ‘training’ data.

in the training phase the 13 LPCCs of the selected speech intervals were presented to the input layer
of the MLP of each modute frame by frame, while the output was clamped {o the corresponding target
value of each of the features. The back-propagation training algorithm was used to compute the weights
by repeating this process until a minimum in the error surface was found which could not be reduced
further. Tables 2 and 3 provide a summary of the target feature values for each of the phonemes, where
+' means the feature is "on" and -’ means the feature is "off", *’ means the feature is “irrelevant” (this
only serves for balancing the amount of training data in each class). These data were largely derived
from Jakobson et al (1961), Mitchell (1962), and Hyman (1975).
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rFeatures Vowels ]

I ij1]e [®#]a]a]3 [ul® ][> [®]
Vocalic/Non-Vocalic | + | + |+ |+ |+ |+ 1+ [+ |+ |+ |+
Compact/Diffuse e O A I S B S B A B R N N e I
Grave/Acute B I IO I I O A (Vi O O e
Flat/Plain SR R I R I R ECT N A O I
Tense/Lax O I A O O e I
Voiced/Voiceless +l+ ]+ |+ |+ +i+ |+ ]+ 1+
Voice Bar P e T N I g o - -

Table 2: Feature Values for Vowels

Features Stop Consonants I
[p[bJt[d[k]g] Voice Bar |

Vocalic/Non-Vocalic | - |- |- - |- |- 1"

Compact/Diffuse I A i B

Grave/Acute P I T S

Flat/Plain R I A e

Tense/Lax I R I P

Voiced/Voiceless ER R A A B I

Voice Bar I O U I

Table 3: Feature Values for Stop Consonants

In order to define the optimal architecture of MLP for each feature, we trained a group of MLPs with
different architectures of one or two hidden layers of different numbers of hidden units. For each
candidate architecture, we trained with 100 initial conditions, in order to aliow the training to start from a
different position for finding the minimum. This strategy helps us to overcome the possibility of using an
initial condition which leads to a local minimum.

in the test phase, the same type of the speech material from the test speaker was used. The 13 LPCC
of the test material was presented to the trained MLPs of each module, and their output was compared
with the expected target feature values allowing a recognition score for each MLP to be obtained. The
best architecture for each feature was determined by choosing the architecture which provided the best
recognition score for that feature in the testing phase.

RESULTS

The best architecture for each of the features is given in the Table 4, where the notation of the
architecture is <number of the input nodes>-<number of nodes in first hidden layer>[-<Number of nodes
in second hidden layer>]-<Number of the output nodes>. For example, 13-14-3 means there are 13
input nodes, 14 nodes in the hidden layer, and 3 output nodes.

Because of the different nature of the vowels and the bursts, we report the recognition score of the
features in vowels and bursts separately. Note however that the modules were trained with data from
both vowel! and burst onset intervals, except for the modules representing Voiced and Voiceless features
which were trained with data from burst intervals only . Table 5 gives the result for testing by presenting
vowel materials only, and Table 6 gives the result for testing by presenting data from burst intervals
only. Tables 5 and 6 represent the results obtained from the best architecture for each of the features.

DISCUSSION

« Analysing the results in the Table 5 and Table 6, we can see that for some features the recognition

25



score is not very high. The reason be because of the different nature of the vowels and the
burst, their acoustic characteristics for the features are different. This suggests training the feature
modules for vowels and stops separately. Preliminary results of such separate extraction shows a
10% improvement on average.

The recognition result of the features Lax and Tense are relatively low. This most likely is due to
the fact that these features relate to the duration of the phoneme, and in a frame by frame analysis
the duration is not captured. A model taking the duration into account should be investigated.

The result reported in this paper was based on one randomly selected test speaker. A complete
rotation of the speakers for selection of the test speaker in order to avoid speaker-dependent
results is in progress.

There has been a continuing debate about the existence of invariant phonemic cues in the speech
signal. Blumstein and Stevens (1979) insist that such cues exist, and demonstrated this by
extracting cues for place of articulation from the beginning 26ms of stop consonants in CV and
VC context. They also showed that these cues are encoded in the gross shape of the spectrum
sampled at the consonantal release. Their features were 'Diffuse-Rising’, ‘Diffuse-Falling’ and
‘Compact’ which correlate with Jakobson et al's ‘Acute’, ‘Grave’, ‘Compact’, and ‘Diffuse’ (‘Diffuse-
Rising’ to ‘Diffuse’ and ‘Acute’; Diffuse-Falling’ to ‘Diffuse’ and ‘Grave’; ‘Compact’ to ‘Compact’).
They reported an average rate of extraction of these features of 85%. Our results, based on a
relatively small amount of data give similar support to the invariant presence of these features.
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Feature Architecture
Acute 13-14-3
Compact 13-12-3
Diffuse 13-12-3
Flat 13-12-3
Grave 13-10-3
Lax 13-12-3
Non-Vocalic | 13-6-4-3
Plain 13-8-4-3
Tense 13-12-3
Vocalic 13-6-4-3
Voice Bar 13-8-3
Voiced 13-8-2
Voiceless 13-8-2

Table 4: Architecture of the modules

Feature Rate
Acute 83.8
Compact 90.1
Diffuse 73.8
Flat 89.6
Grave 841
Lax 80.8
Non-Vocalic | 98.8
Piain 88.5
Tense 79.4
Vocalic 94.9
Voice Bar 100.0

Table 5: Recognition Rate of the Features for Static Vowels

Feature Rate
Acute 82.1
Compact 90.4
Diffuse 79.3
Flat 97.8
Grave 77.2
Lax 54.1
Non-Vocalic | 72.8
Plain 98.1
Tense 54.9
Vocalic 76.9
Voice Bar 98.3
Voiced 85.9
Voiceless 83.6

Table 6: Recognition Rate of the Features for Burst of the Stop consonants
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