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A set of 144 declarative sentences with a subject-verb-object structure is drawn from a
vocabulary of monosyliabic and disyllabic English words. Fundamental frequency con-
tours and energy contours of the sentence set are analysed with respect to the sylla-
bic structure of the sentences. Muitivariate correlation analysis provides predictions
for the average energy and fundamental frequency of syllables. Based on the distribu-
tions of the energy, voicing and fundamental frequency parameters, 2 different con-
tinuously variable Hidden Markov Models are trained to distinguish between intersyli-
able intervals, stressed and unstressed syllables. One HMM uses single-mixture
Gaussian parameter distributions while the other uses double mixtures. The Viterbi al-
gorithm is used for automatic segmentation. it is noted that the convergence of the
training procedure is sensitive to the initial distributions. 1t is also argued that the in-
clusion of duration modelling is essential to distinguish between stressed and un-
stressed syllables.

1. INTRODUCTION

The potential contribution of prosody-related speech parameters to automatic speech recognition has
long been recognised. Yet, there is still little hard evidence as to how energy and fundamental frequency
contours including their timing characteristics can be utilised in automatic speech recognition systems.

in this context, the question arises whether it is possible to derive the stress pattern of a speech utter-
ance from the prosodic parameters that can be measured from the speech waveform. Such information,
related to either the word stress or the sentence stress patterns could then conceivably be integrated
into an automatic speech recognition system in order to achieve higher recognition rates for isolated-
utterance or continuous-speech recognition.

Two experiments were conducted to determine the extent to which stress patterns can be modelled us-
ing energy, fundamental frequency and voicing measurements. In the first experiment, a small corpus of
speech data, containing simple subject-verb-object sentences was recorded and analysed with respect
to the average energy and fundamental frequency for each syllable. The speech data is described in de-
tail in Section 2 and this experiment itself is reported in Section 3.

The second experiment uses the same corpus of speech data to derive the statistical distributions of the
three acoustic parameters energy, voicing and fundamental frequency. Two different Hidden Markov
Models were then trained to recognise the three states "stressed syllable”, "unstressed syllable” and "in-
tersyllable interval”. The results of this experiment are reported in Section 4.

2. SPEECH DATA

The speech material is restricted to simple transitive sentences, with one-word subject noun phrases fol-
lowed by one-word verbs and one-word object noun phrases. The words chosen are either monosylla-
bic or disyliabic, the latter class having a stress on either the first or second syllable. Some care was
taken to ensure that both relatively high and relatively low vowels were represented in the words chosen
in order to balance the intrinsic effects of vowel quality on FO.

Four words were chosen for each of the monosyilabic (11-words), disyllabic with stressed first syllable
(12-words) and disyltabic with stressed second syllable (22-words) classes, for both nouns and verbs.
This gives a total of twelve nouns and twelve verbs. The words were chosen so that half of the words
in each class had relatively high vowels and the other half had relatively low vowels. The words chosen
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are listed in Table 1.

Each of the twelve nouns was used as a subject noun phrase with each of the twelve verbs. This pro-
duced a set of 144 sentences. Each of the twelve nouns was also used twelve times as an object noun

phrase. The order of the sentences, and the object noun phrase for each sentence were determined

pseudo-randomly. A placemenit algorithm was used which ailowed the same noun to be

selection-with-re

both the subject and object in a single sentence, and this in fact occurred in five of the sentences.
Nouns Verbs
High vowel Low vowel High vowel Low vowel
11-words Greeks mobs beat mark
kings tarts leave rob
12-words teachers farmers nibble charter
students robbers tutor honour
22-words cadets Pathans admit garotte
patrols Malays respect retard

Table 1. Word selection for the sentence generator.

The sentences were recorded by a male speaker of Australian English and digitised at 8000 samples/s
and 12 bits/sample. The signal energy was determined for each 16ms frame and the voicing and funda-
mental frequency parameters were determined every 16ms with a centre-clipping autocorrelation algo-
rithm based on a frame size of 48ms.

Syllables were marked automatically with some manual corrections. For each syllable, maximum, aver-
age and total energies, average and central fundamental frequencies, zero-crossing rate and first linear-
prediction coefficient were determined. In addition, the maximum-energy frame for each syllable was
recorded for the determination of syllable and stress timing.

These acoustic parameters were then correlated with the different structures of the recorded sentences.

3. ENERGY AND FUNDAMENTAL FREQUENCY AND VOICING STATISTICS

In the first experiment, the dependencies of the average energy and fundamental frequency of a syllable
on the syllabic structure of the sentence were investigated. As each sentence of the recorded material
consists of subject, verb and object, and each of the three words can be monosyHabic or disylabic with
word stress on either the first or the second syllable, the recorded material was divided in 27 groups of
sentences where each group has a characteristic syliabic structure.

The three different word structures are denoted as "11" for a monosyliable”, "12" for a disyllable with
word stress on the first syllable, and "22" for a disyllable with word stress on the second syllable. This
notation is extended to sentence syllabic structures in the obvious way. For example, "11-12-22"
denotes the syllabic structure of the sentence "Kings honour patrols”, etc.

The results of the analysis for the average fundamental frequency of the syllable are shown in Figure 1.
The horizontal axis represents the sequence of stressed (fat dots) and unstressed (hollow dots) syllables
for the 3 words. The vertical axis represents the average fundamental frequency for the given syllable
over the group of sentences with the given structure.

For most of the 27 different sentence structures, the falling tendency of a fundamental frequency contour
from the first to the second word is easily observed. From the second to the third word, the speaker
tends to raise the fundamental frequency very slightly. Within disyllabic words, most transitions between
the two syllables are marked by a distinct fall in fundamental frequency.

Multivariate correlation analysis shows the following correlations between fundamental frequency, posi-
tion of word in the sentence and syllable structure of the word:
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Figure 2. Average syllable energy vs syllabic structure.

Figure 1. Average syllable FO vs syllabic structure.
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Figure 3. Energy, voicing and fundamental frequency distributions for State1.

Figure 4. Energy, voicing and fundamental frequency distributions for State2.
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Figure 5. Energy, voicing and fundamental frequency distributions for State3.
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Introducing the variables x4 for the position of the word in the sentence (x4=1,2 or 3), and x; for the
word structure (x,=0 if structure=11, Xp=-1 if structure=12, xo=1 if structure=22) the average fundamen-
tal frequency for the syllable may be expressed as

FOayo = 106.4Hz - Xy * 3.7HZ + X3 * 0.7Hz
with x4 accounting for 18% and x, for 1% of the variance of FOLye and a totai correlation of R=0.44.

The corresponding average energy contours for the 27 sentence categories are shown in Figure 2. In
this figure, the vertical axis represents the average energy over the sonorant part of the syllable meas-
ured in dB.

The figure shows a decline of syllable energy over the sequence of words which corresponds to the fal-
ling tendency of the fundamental frequency shown in Figure 1. The other dominating influence on the
syllable energy which is clearly shown is of course the higher energy for stressed syllables as compared
with the unstressed syllables.

Modeliing the energy contour on the variables x; as defined before and xg for ihe word stress (xg=1 for
a stressed syllable, x3=0 for an unstressed syllable), results in the model for the average syllable energy
of

Eqve = 43.40B - Xy * 1.7dB + xp * 2.3dB
with x4 accounting for 256% and x; for 15% of the variance of E,, and a total correlation of R=0.63.

The existence of this correlation between stress patiems and the energy and fundamental frequency
parameters provided the motivation for a second experiment.

4. AUTOMATIC SYLLABLE SEGMENTATION USING CONTINUOUS HMM

In the second experiment the distributions of the three prosodic parameters energy, voicing and funda-
mental frequency were determined on a frame-by-frame basis for stressed syllables, unstressed syll-
ables and intersyllabic intervals. On the basis of these distributions two different Hidden Markov Models
were trained, one using single Gaussian parameter distributions, the other using mixture-Gaussian
parameter distributions.

Figure 3 shows the distribution of frame energy, voicing and fundamental frequency for stressed syll-
ables (State 1), Figure 4 shows the corresponding distributions for unstressed syllables (State 2) and
Figure 5 shows the corresponading distributions for intersyllable intervals (State 3).

The energy distributions show a clear trend towards higher energies as one progresses from State1 to

State3 with the mean values of 27dB for State1, 39dB for State2 and 41dB for State3. However, it is
also clear that the distributions overiap considerably, especially the unstressed vs stressed syllable dis-

tributions.

Figure 6. 3-State Markov Model for Intersyllables (1), Unstressed (2) and Stressed (3) Syliables.

The distributions of the voicing parameter, shown in Figure 4, are significantly wider than the energy
curves while also showing an increasing tendency from Stated to State3 with mean values of 0.11 for
State1, 0.54 for State2 and 0.57 for State3.

The fundamental frequency distributions, shown in Figure 5, are virtually identical between State2 and

State3 with mean values of 96Hz and 98Hz while the distribution for State1 is entirely due to the
behaviour of the autocorrelation algorithm for unvoiced speech segments.
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Figure 6 shows the Markov Model which represents the state transitions over the course of the sen-
tences. All transitions with the exception of transitions between states 2 and 3 are allowed as the sys-
tem must enter an intersyllabic interval in between each two syltables. Initially, the system is forced to
be in State1.

The means and variances of these distributions formed the basis of ihe training of the two Markov
models. For the single-mixture model, the means and covariances as determined previously were used
as the initial model. For the double-mixture model, reasonable means and covariances for the initial
model were estimated graphically. In the double-mixture model, a diagonal covariance matrix was used
for the initial model.

The forward-backward algorithm and the Baum-Welch reestimation procedure were used with the first
72 sentences of the recorded material for training until convergence of the model parameters could be
observed after 20 iterations. The Viterbi recognition algorithm was then used to recognise the sentence
structures of the remaining 72 sentences and to segment them into sequences of States 1, 2 and 3.

Table 2 shows the confusion matrices for the frame labelling using the Viterbi algorithm. Table 2a
shows that the single Gaussian pdf results in an overall correct frame recognition rate of 75.7% with
most of the intersyllables recognised correctly but with significant confusion between stressed and un-
stressed syllables. The mode! in fact labelled the majority of the unstressed frames as stressed.

Table 2b shows that the assumption of a double Gaussian mixture pdt in conjunction with diagonalised
covariance matrices worsens the automatic segmentation results 1o 61.4%. A majority of intersyllables
are now labelled as unstressed syllables. Careful analysis of the convergence of the model during the
training phase leads to the conclusion that the model gonverges away from the means initially estimated
from Figures 3, 4 and 5 towards a configuration in which State2 attracts more and more of the observa-
tions from both State1 and State3.

We argue that the training of this Hiddeh Markov Model is very sensitive to the initial statistical distribu-
tion of parameters, and that the diagenalisation of the covariance matrix leads to the convergence of the
Baum-Welch algorithm towards a suboptimal maximum.

Furthermore it is evident from the two experiments reported here in conjunction with a recently published
analysis of syllable timing that the inclusion of duration timing in the Markov Model is essential for the
reliable modelling of stress patterns in speech.

State Determined by Viterbi

Stated State2 State3
Actual State State1 2886 41 139
- State2 103 167 519
- State3 138 618 1803

State Determined by Viterbi I

Stated State2 | State3
Actual State State1 1328 1455 283
" State2 12 129 648
- N State3 29 51 2479

Table 2. Confusion matrices for Viterbi labelfing of the 3 states - a) using single Gaussian parameter dis-
ributions; and b) using double Gaussian parameter distributions.

The experiment shows that Hidden Markov modelling is capable of reliably segmenting speech material
into syllables but that discrimination between stressed and unstressed syllables needs to take into ac-
count further information, specifically syllable duration.
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