THE WAL SPEECH PROGRAMMING ENVIRONMENT
P Kenne, D Landy, M O'Kane, S Nuisen, A Mitchell and S Atkins

Faculty of Information Sciences and Engineering
University of Canberra

ABSTRACT - The WAL (Wave Analysis Laboratory) Speech Programming
Environment was first developed in 1987 1o provide software tools for rapid
prototyping of the FOPHO and SPRITE speech recognition systems. The
environment has been revised and extended several times following
evaluation trials at various sites. Current versions are maintained under both
MS-DOS and Unix.

‘A central feature of the environment is a programming language which was
designed to provide a high-level, natural-language-like facility for
phoneticians and other speech scientists not familiar with standard
programming languages to write and test speech recognition rules.

The rule language provides the usual logical operators (‘and’, ‘or', ‘not) for
combining rules, together with operators for temporal reascning (‘after',
'before’, ‘then’), A set of primitives for describing shapes and their
deformations allows the notion of 'rubber templates' to be included in the
language, and when combined with the temporal reasoning facilities,
provides an extension to picture languages.

The WAL environment is highly portable. The language is interpreted, with
the interpreter implemented in C 'and the graphical user interface is
implemented using X Windows. We describe the language and environment
and their implementation together with a number of examples illustrating the
usefulness of the WAL environment in both speech and non-speech
applications.

INTRODUCTION

The origins of the Wave Analysis Language were in work designed to capiure the
expertise of expert (speech) waveform readers, see (O'Kane, 1983), and to provide a
tool which these experts could use to write speech recognition rules without
necessarily having a background in programming. To achieve these goals, the
language had to provide the primitive structures which waveform readers use,
together with a natural mechanism of use. The language has been in use at the
University of Canberra, both for research in speech recognition and for teaching in
Artificial Intelligence courses.

The Wave Analysis Language is embedded in a programming environment which
contains tools which allow for easy graphical inspection of recognition rule firings
(see, for example, Figure 1). There are machine leaming tools which allow for
automatic recognition rule parameter adjustment. The Check Tool automatically
"checks" rule firings produced from the WAL interpreter working with any given set of
rule files against an already-marked-up database. The tool reports current fires
where the results match the database's, misfires where the results fired incorrectly,
and misses where the results miss marked portions of the database. As well as
reporting the starting/ending point fire/misfire/miss details for each example of each
sound and word in the database the Check Tool produces a summary after each
database run indicating totals for each type of rule firing.

434

WRITING RULES IN THE WAVE ANALYSIS LANGUAGE

Statements in WAL have an extremely simple production-rule form and are generally
referred to as 'rules’. When a function in WAL is true a rule is said to have fired’ and
a label is applied. Immediate examination of the position of rule firings can be
carried out either visually or aurally.

The general form of a rule is

feature
name : <Rulename>,
wave : speech,
(association : <Conditions)
end.

This rule may be interpreted as "if <Condition> is true, then the rule <Rulenames
holds".

The general form of a condition in a rule is
<Derivative> is <Features> [with characteristic <Chars],

where the square brackets denote an optional construct, <Derivatives is a signal
processing function, and both <Feature> and <Char> are primitive features. The set
of signal processing functions and the primitive features are built in to the language.
(They are both easy to extend however, with the user supplying appropriate high-
level code in, for example, C or FORTRAN.)

An example of a simple rule (without the optional characteristic part)
is

feature
name : sloperule,
wave : speech,
(association : slope(w3(20000)) is
g low_amplitude(800))
end.

This rule holds when the slope of the w3 function (see O'Kane and Mead, 1987)
calculated at a sampling rate of 20kHz is below 800. The result of applyingaruletoa
wave is a set of intervals (labelled with the rule name) where that rule holds. It is
possible for the set of intervals to be empty.

Once a rule has been defined it may be referenced in other rules. Rules can be
joned using connections. The language has the binary connectives ‘and', ‘or, 'then’,
‘before’ and ‘after’ available (see Figure 2). The condition part of the rule may aiso
use negation.

An example of a rule having a characteristic part is

feature

name : sloperule2,

wave : speech,

{association : slope(w3(20000)) is
low_amplitude(800)

with characteristic time_long(20))

end.

435

The segments produced by rule 'sloperule2’ are those produced by rule 'sloperule’
having fength greater than 20 milliseconds.

The characteristics available are

time_long(Time), time_short{Time})
extend(Percentage)

extendi(Time)

extendfr(Time), extendfi(Time)

time_long' and ‘time_short' select segments of duration greater or less
thanrespectively the specified time in milliseconds;

'‘extend’ extends each end of each segment by the specified percentage; 'extendf’,
'extendir, 'extendfl’ extend each segment by the specified time in milliseconds -
‘extend’ adds the time to each end of each segment, 'extendfr’ and 'extendfl’ and the
time to the right and left ends of each segment respectively.

Features which are available include:

long_low_amplitude(Time,Lo)
short_low_amplitude(Time,Lo)
long_high_amplitude(Time,Hi)
short_high_amplitude(Time,Lo)
long_between_amplitude(Time,Lo, Hi)
shori_between_amplitude(Time,Lo,Hi)
flat(Percentage, Number)
rise_up(Percentage1,Percentage2)
fall_down(Percentage1,Percentage2).

WAVE ANALYSIS LANGUAGE ENHANCEMENTS

Several years use of the language have proved its ease of use and it has clearly
achieved its design goals. As other programming languages evolve with time, so
has the WAL rule language, and we now describe the next evolutionary stage. The
changes described are all based on user feedback.

A criticism of the first version of the language was that it was too verbose, requiring
many keywords (e.g. feature, name, wave, etc.) per rule, and that the names of built
in primitive features were also too long. Two examples of new-style rules are:

el: fftblog(20000,100,500,220,3) is long_high_amp(10,30);

e2: fitblog(20000,100,500,220,3) is shori_low_amp(10,30)
with extendf(10);

Here the rule names are el and e2.

A need was expressed for the ability to perform arithmetic operations
on the signal processing functions. Rules of the form are now available

e3: fitband(20000,1000,2000,200,5) [+]-/*}/]
fftband(20000,3500,4000,100,2) is between_amp(10,30);

436

where the arithmetic is performed point-wise on the signal processing
functions, and the square brackets indicate that one arithmetic
operator is chosen. In addition, expressions may be more complicated:

2*(fftband(20000,1000,1400) + 10)/
(120 - fftband(20000,1000,1400))

The previous version of the language did not provide an explicit
conditional expression. The form of rules involving conditionals is

e5: if (male) (ed) else (e3);

e6: if (w3(20000) is long_high_amp(10,20))
(envtop(20000,250,3) is ext_high_amp(10,12,14))

(e2);

else

The generai form of the conditional is

if (seg-list-object1) (seg-list-object2) [(seg-list-object3)]
where the seg-list-objects are expressions which evaluate 1o segment lists.
Compasition of functions is also supported:
e7v2: w3(filter(20,5),20000) is long_high_amp(10,40);
Other example rules are
89: slope(siope(slope(w3(20000)))) is between_amp(10,20);
e10v2:slope(w3(filter(20,4),20000)) is between_amp(10,20);
e11v2:w3(envtop(filter(20,5),20000,250,4),20000) is low_amp(4);
As above, the usual connectives are supported
e12: el [and|or[then|before|after] e2;
e13: (el and e2) then e3;
e15: et and (not(e3));

The new rule language also supports a macro facility which accelerates rule
gleg'/elopment time since changing a single define will propogate throughout the rule
For example

#define 1(x,y) envtop (20000,x,y)
when used in a rule
rule : 1(250,3) is long-high-amp (10,20);
will expand out to

rule : envtop (20,000,250,3) is long-high-amp(10,20).

437

REFERENCES

M O'Kane, "The FOPHO Speech Recognition Project’, Proceedings of the Eighth
International Joint Conference on Arificial Intelligence, Karlsruhe, pp.630-632),

M O'Kane and D Mead, "Key features in continuous speech", Proceedings of the
Eleventh International Congress of Phonetic Sciences, Tallin, Vol. 3, pp.82-85,
August 1987

438

Sooschiie; [P ite e, j
=

; - — [r]

Figure 1: Example of WAL graphical rule-fire inspection and derivative display

system.
Rule Connective Results (Time —)
‘_<5ms - ’
ruleA - L Lt ot] L
wleB R T 71]
and ™ 1 11 -
or ¢ pm—— T —
tuleC — then — -
before — | —— r~— — —r
aﬂer - ST S B

Figure 2: Chart showing rule-connective protocols

439

