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ABSTRACT
Acoustic models of the vocal tract show that turbulence plays a significant role in speech pro-
duction. Non-lincar dynamics has recently provided tools which allow analysis in this very
difficult arca. In this note vowel waveforms are examined for evidence of irregular behaviours

using such tools.

INTRODUCTION

Traditionaily, fiuid flows have been modelied lincarly due to the exweme complexity of solving non-
linear systems of equations. This linear approach has also been taken in modelling the physical system
of speech production, which involves complex changes in parameters throughout the speech process.
With the growing body of techniques available to study previously intractable non-linear processes
comes the chance 10 examine speech waveforms from a new perspective.

DATA

The speech of an Austratian female was recorded onto tape, amplified to +1.25 volts by the main
amplifier, then filtered through a 7.6kHz Butterworth low-pass filter to avoid aliasing. The signals were
then sampled at 8kHz, with a gain of eight, with the DT2801 digital-to-analogue converter. Features
were extracted with the ILS signal analysis package, and analysed with the § statistical package.

The sampled data was stored by ILS in ‘coded ASCII form’, which was not explained in the manual.
By coded ASCII it was meant that each 16 bit sample was converted into three printable ASCII charac-
ters (excluding upper and lower case alphabetics) in the order low byte to high. It was clear that each
character denoted five bits, with the third denoting six bits (five value bits and a sign bit). As the char-
acters used were in the range octal 40 to octal 77, and octal 133 to octal 137, there was a subtraction of
octal 40 from each character when processed to bring it down to the appropriate number of bits before
being integrated into the final number. Examples are: ‘12 for -14, and ‘5- * for 437.

Slices were taken from each of the vowels contained in the vocabulary ‘one’, ‘two’, ‘three’, ‘four”,
“five’ and ‘six’. A frame is of 5.375ms duration. To maintain the stationary nature of the signal, a slice
of 129 data points - three frames - was used in the mappings described below. The frames to be used
were selected arbitrarily, within the constraint that the frames were within the vowel section of the
word.

ANALYSIS METHODS

System behaviour can be examined in the phase space: a random signal is seen as a cloud, whilst deter-
ministic chaos lies on a form of curve. The latter occurs as such chaos is related to strange attractors
with fractal dimension. Rather than study the attractor in phase space, it is usually easier to study Poin-
caré and next-amplitude maps. Poincaré maps show trajectory intersections with a particular plane:
(x(r), x (¢ +1)), where T is some time offsct. This is termed T-advance mapping (Parker and Chua, 1989).
Next-amplitude maps consist of plotting successive maxima: (Xmax;» Xmas ). Again, deterministic chaos

is indicated if there is one dimensional structure in these plots.

i+1

Given a time series x (¢;) then, for almost all time delays T and sufficiently large values of m, a new at-
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Figure 1. Next-pair maps
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Figure 2. Next-amplitude maps
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Figure 3. Log-log plots of interpoint distances for several embedding dimensions
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tractor, defined by the trajectory (x(), x(4 + 1), x (& + 21),..., x(& + (m—1)7), will have the same
dynamic properties (set of Lyapunov exponents, fractal dimension eic.) as the original. Takens (1981)
showed that the embedding dimension m does not exceed 2n + 1, where & is the number of original
variables, however this is only a sufficiency condition, and often a far smaller dimension will be
enough. In particular, essentially two dimensional orbits can be embedded in three dimensions (Schaffer
and Kot, 1986).

To estimate the attractor dimension an investigation is needed of the numbers N(r, m) of pairs (x;, x;)
where r is the maximum distance between the points. The correlation dimension D can be determined
from log-log plots of N(r, m}) versus r as

. logN(r,m)

D = lim—= it

-0 log(r)
If there is a range of » with a reasonably constant slope, then there is self-similarity. A permanent in-
crease in slope with an increasing m indicates a random signal, whilst a saturation in slope indicates a
low-dimensional atractor (Broomhead & Jones, 1989, Grassberger & Procaccia, 1983, Mende et al.,
1990, Eckmann, 1985).

RESULTS

Initially next-pair plots were produced. In these, each data point x; and its successor x;., form a pair to
be plotted. If the sequence of time series points was purely random, then the resultant graph would be a
unstructured tangle of lines. As the plots of Figure 1 show, this is certainly not the case for several of
the vowels under examination, although others appear to have rather little structure. A search to deter-
mine what structure there is in these series then proceeded. It should be noted that only the vowel sec-
tion of the word was examined, though each will be referred 1o by the fulf word to avoid any confusion.

Next-amplitude maps were then produced for each vowel. These are shown in Figure 2, and reveal clear
structure, with the exception of ‘six’. In conjunction with its next-pair plot it was concluded that ran-
domness was displayed. When the frames were initially selected, there was no equipment available to
double-check that the frames fell on the vowel section, and it was suspected that a sibilant section had
been inadvertantly included. Later checks proved this to be the case. Hence sibilants display random-
ness, whilst vowels have structure in next-amplitude maps.

The next step was to measure the dimensionality. Firsly plots-of N (r, m) against r were made, then
the log-log graphs of Figure 3 which show (from bottom to top) embedding dimensions
m=23,4,5,6,7. To check that the slopes saturated correctly, plots were additionally made of the
slopes of the log-log plots. These revealed that the vowels demonstrated correlation dimensions between
3 and 4, or 4 and 5 in the case of ‘two’, which agrees with the observations of Tishby (1990). It is also
1o be noted that the slopes for the graph of ‘six” do not saturate in the dimensions examined.

CONCLUSION

1t has been shown that certain vowels display low-dimensional chaos, and further, that the correlation
dimension lies between 3 and 4. A scction of sibilant waveform, inadvertantly included, was found to
be random rather than chaotic. To be compleie, investigations are needed to find equations for the
underlying non-linear behaviour that has been demonstrated here, however that is beyond the scope of
this note.
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