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Abstract

Any review of the extensive literature on word recognition reveals that a large variety
of speech features is used in computer based word recognition. However, most of the work
focusses on a limited set of features adapted to a selected recognition method.

We report on a series of experiments designed to isolate the relative merits of a range
of features. The results for each feature or set of features are standardised by testing them
with female and male speakers having a New Zealand accent using a vocabulary zero to nine.
A dynamic time warping algorithm is used. The features tested include root mean squared,
zerc crossing rate, linear predictive coefficients, cepstral coefficients, and transitional data in
the form of dynamic cepstral coefficients. It is found that the best performance is achieved
with the cepstral information. Addition of other features to this set gives only marginal
improvement.

INTRODUCTION

To objectively evaluate the utility of computer word recognition features with respect to each
other, they must be tested using the same algorithm while maintaining database parameters
such as speaker, recording techniques and vocabulary constant. In this way recognition results
for each feature can be compared for a particular speaker.

To evaluate the effect on recognition accuracy with respect to the speaker a number of different
speakers have been tested, both male and female. These speakers all have New Zealand accents.
A standard database containing the ten digit words zero to nine is used. These words have been
spoken on average 20 times by each speaker.

The recognition algorithm is an unconstrained endpoint dynamic time warping(DTW) scheme
from which the calculated distances are used for deciding recognition outcome.

This paper begins by discussing the recognition algorithm used for the tests. The following
section presents the features used for recognition which included root mean squared(RMS), zero
crossing rate(ZX), linear predictive coefficients(LPC), cepstral coefficients(CEP), and dynamic
cepstral data. Results for optimum performance of the features for each speaker are given in the
final section.

RECOGNITION ALGORITHM
1

The recognition algorithm used for testing all the features discussed, is a speaker dependent,
isolated word scheme. The input speech is blocked into frames of samples from which the
acoustic features to be tested are calculated. These acoustic features are stored to be used for
either recognition, as a test word, or for training, as a reference word. For recognition, the
reference and test features are time aligned via a dynamic time warping procedure described by
Itakura(1975) , and a Euclidean distance is calculated between the test word and each reference
word in the dictionary. After the test word has been matched against all the reference words the
st of distances is scanned to select the minimum which identifies the recognized word. A block
diagram of the recoguition algorithm is shown in Figure 1.

Each speaker recorded the ten words up to twenty timesin a quiet room. The words were digitized
at 10 kllz after being passed through a 4.5 kliz low pass anti-aliasing filter. The digitized words
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Figure 1: Block diagram of recognition algorithm.

were stored on disk for future algorithm testing. Ten repetitions were used for training while the
other repetitions for each speaker were kept for testing.

The features tested using the recognition algorithm were root mean square value, zero crossing
rate, linear prediction coefficients, cepstral coeflicients, and dynamic cepstral coefficients. These
features were calculated with a range of pre-processing variables to study the effect of window
size, window type and pre-emphasis. Window lengths were varied over a range of 150 to 400
sainples using either a rectangular or Hamming window. If pre-emphasis was used a scale factor
of 0.95 was chosen.

RECOGNITION FEATURES
Root Mean Square (RMS)

The root mean square value of the signal characterises the loudness of the speech sound and is
calculated as

IO CY))
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where S; is the ith sample in the kth frame and T is the number of samples in the kth frame.
"To obtain results that are independent of average signal level this measure must be normalized
across the word such that each word has the same maximum value. The set of RMS values of
a word gives a simple, rapidly calculated feature that is capable of distinguishing words with
unique envelopes, such as the words ‘six’, ‘seven’ and ‘eight’. Unfortunately, however, many
other words tend to look very similar using this measure, examples of these are the words ‘one’
and ‘nine’, or the words ‘three’ and ‘four’. Relatively low levels of microphone noise, spikes and
breath noises from the speaker can cause large errors.

Energy measurement has been used for some time in word recognition schemes, often as an
addition to some frequency representation, such as LPCs (Rabiner et al., 1984a) (Rabiner, 1984)
(Rabiner et al., 1984b), or zero-crossings (Lau and Chan, 1985). However when used as the
only parameter for recognition it has been reported to give a very low accuracy. Rabiner(1984)
claimed only 30% accuracy with energy alone. This is verified by our study in which the RMS
parameter gave recognition accuracies ranging from 16% to 60%. Optimum conditions were very
speaker dependent but recognition tended to improve with a window size between two to three
pitch periods and with no pre-emphasis of the speech. Overlapping the windows gave a slight
increase in accuracy.

Although the performance of RMS as a recognition parameter is poor it does have an important
role in the endpointing of words (Lamel et al., 1981).
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Zero crossing rate (ZX)

It was established by Licklider et al(1948) that infinitely clipped speech, that is speech that
retains only its zero-crossing positions, remains highly intelligible to human listeners. Since then
zero-crossing measures have been used as a recognition parameter. Although the time intervals
between successive crossings of the zero line are related in a complicated way to the frequencies
present in the sound, it is possible to obtain a frequency related measure by recording the
rate of these crossings within a frame of the sound. The principle application of this measure
is in separating the relatively low frequency voiced sounds from the high frequency unvoiced
components.

Zero-crossing rate in some time interval is the most widely used measure in zero-crossing anal-
ysis(Niederjohn, 1975). Using the same notation as Niederjohn the zero-crossing rate can be
written as

Zr = My ] Y
where My is the number of zero crossings in the frame k, and T is the number of samples in the
frame.

The ability of zero-crossings to distinguish unvoiced sounds from background silence makes this
measure useful for endpointing words. However breath noise along with other higher frequency
sounds can cause erroneous identification of the endpoints.

We found that the optimum conditions when zero-crossing rate was used alone for word recog-
nition occurred with a window of 200 samples (approximately two to three pitch periods), with
pre-emphasis and with 30 percent overlap of frames. The increase in recognition accuracy ob-
tained with pre-emphasis is due to the increased amplitude of the unvoiced component.

Linear Prediction coefficients (LPC)

LPC coding is one of the most common techniques used in the processing of speech, and in
particular in the field of speech recognition. Representation of speech using LPCs is equiva-
lent to approximating its short term power spectrum by an all-pole speech production model
(Makhoul, 1975). Thus LPCs (ax) can be written as the filter coeficients of the linear system
representing the vocal tract and given by

A

1- Yk aez*

Modelling by all-pole methods has severe drawbacks for particular sounds, especially those which
contain spectral nulls, such as occur in nasalised sounds. LPC analysis on this type of sound
gives results which vary significantly for nominally similar signals, particularly around the region
of the spectral zeros (Juang ef al., 1987). Another problem is that the order of the model must
be chosen a priori. The fixed number of poles thus enforced can lead to the addition of spurious
resonant peaks.

H(z) =

Recognition accuracies reported using LPCs have been in the high 80 or low 90% region. We
were unable to reproduce that level of accuracy. Our recognition results ranged from 20 to 80%
depending on the speech pre-processing used and the speaker. The optimum conditions occurred
when frames of 200 samples of the speech were pre-emphasised and Hamming windowed. Over-
lapping the analysis frames did not give significant improvements, and in some cases reduced
recognition accuracy. Recognition accuracy also increased when silence and low amplitude frica-
tive sounds were removed from within the word.

Cepstral Coeflicients(CEP)

Cepstral coeflicients are now the most widely used feature for word recognition. The real cepstral
coefficients are defined as the Fourier transform of the log spectrum and are calculated recursively
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from the LPCs as (Furui, 1986)

k-1
—keg = kay + Z(Ic —N)cknay k>0

n=1

Cepstral processing produces a smoothed version of the LPC spectrum with smoothness depen-
dent on the number of coefficients chosen - ten are usually used.

Previous studies have given recognition results, using cepstral coefficients, well into the 90%
region and usually around 98 to 99%(Juang et al., 1987) (Rabiner et al., 1989) (Furui, 1986). In
this study the performance of cepstral recognition was heavily dependent on the speaker, with
results ranging from 16% to 90% but mostly clustered around 80%. Optimum conditions occurred
when two or three pitch periods of speech were used, Hamming windowed and pre-emphasised.
Overlapping data frames did not give any significant improvement.

Dynamic Cepstral Coefficients (DCEP)

Spectral transitions as well as instantaneous spectral features are believed to be important for
sound recognition. Dynamic spectral feature analysis is still in its infancy and only a few re-
searchers are using this information for word recognition, although it has been used more widely
as a speaker recognition tool (Soong and Rosenberg, 1988). Simple first order finite differences
are far to noisy to be used as dynamic information so the method used jn this study followed that
of Soonget al.(1988). Using the LPC-based cepstral coefficients (¢, (1)), orthogonal polynomials
which characterise the time trajectories of the cepstral coefficients over a finite number (2k+1)
of fixed length frames are calculated. For a first order orthogonal polynomial two coefficients are
calculated. The zeroth order or constant term is given by

(t) = T hien(i + k)
mib) = S
ke k b

where Ay is a symmetric window function of length (2k+1) frames. The first order orthogonal
polynomial coefficient, or spectral slope is

Acn(t) = TE k Bhien(t 4 k)
” LIk hik?

When Furui(1986) used these measures he showed the dynamic coeflicients extracted from nine
frame intervals to give only slightly better recognition performance than the instantaneous cep-
strum coefficients. In contrast, we obtained recognition accuracies higher than the cepstral
coefficients alone by up to 10%, with results ranging from 60% to 96%. Optimum conditions
occurred, as with the cepstral coefficients previously, with frames of data of two to three pitch
periods, pre-emphasised and Hamming windowed. The dynamic coefficients gave best results
when calculated over seven to nine frames, with this window being moved forward one frame
at a time. Window function hj was tested as constant (hy = 1), linear (ht = k), and squared
(hx = k2) with the highest accuracy occurring with a linear window function,

RESULTS

Testing has so far been completed for five male and two female speakers. The results in Table 1
are given for the most useful subset of the variables tested.

The best results, across all speakers, were obtained using dynamic cepstral coefficients, We are
therefore led to believe the representation of the the transitional information of the speech is an
important recognition feature.
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The second greatest increase in recognition resulted from applying a Hamming window to the
data. This pre-processing step gave recognition increases for all speakers.

Pre-emphasised data was found to work better for most speakers and for all features except RMS,
while overlapping data frames did not seem to give any significant improvement.

Feature samples/ sample window pre- Male Fernales
(number used) frame overlap type emphasis Speakers Speakers

AE AM CC CP MC DR TC

RMS(1) 200 0 rect No 30 44 40 54 42 31 57
200 0 rect Yes 26 36 26 48 36 32 46
200 0 Hamm  No 30 48 33 59 38 29 44
200 g Hemm  Yes 23 36 34 50 45 37 -
200 60 rect No 33 42 - 51 43 30 55
ZX(1) 200 0 rect No 33 31 22 61 33 39 25
200 0 rect Yes 45 35 32 70 58 54 55
200 60 rect Yes 49 32 39 33 60 59 81
LPCS(lO) 200 0 rect No 21 44 33 54 35 33 38
200 0 rect Yes 20 48 47 61 38 51 -
200 0 Hamm No 33 50 43 69 32 40 74
200 0 Hamm  Yes 40 70 54 T4 40 52 73
200 60 Hamm  Yes 45 50 - 58 - 26 78
CEP(10) 200 0 Tect No 45 60 47 71 52 48 -
200 0 rect Yes 47 58 49 7 43 69 -
200 0 Hamm No 65 70 56 79 58 60 81
200 0 Hamm  Yes 79 76 67 87 53 76 89
DCEP window hy = 7frames, linear
Zeroth order(10) 200 0 Hamm  Yes 84 90 86 96 75 86 95
First order(10) 200 0 Hamm  Yes 75 82 8 93 72 86 90

Tablel. Percentage recognition accuracies for each speaker.

CONCLUSIONS

We tested a range of feature types using different forms of pre-processing on the speech of 2
set of New Zealand speakers. The best results were obtained using dynamic cepstral coefficients
which represents the transitional information of the speech. The results also showed the single
most useful pre-processing step was to Hamming window the data.

Using New Zealand speakers allowed us to compare results with those from American speakers
discussed in the literature. It also allows us to tentatively compare accent effects on recogni-
tion performance. Firstly, an examination of the confusion matrices shows that the results for
New Zealand speakers are slightly different to those of their American counterparts. For New
Zealand speakers the major confusion is between the words ‘one’ and ‘nine’, while the results
from American speakers give major confusion between ‘five’ and ‘nine’. Secondly, those speakers
with a stronger ‘New Zealand’ accent, that is with very nasalised vowels, gave lower accuracies,
such speakers were AE, AM, CC and MC.

1t might be expected that higher accuracy would be achieved when sets of features are combined
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for recognition. Our initial testing has revealed that overall recognition accuracy is improved by
2 to 3%, equivalent to a 75% reduction in error, when the ‘best’ features (cepstral and dynamic
cepsiral) are combined.
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