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ABSTRACT - The use of an information-theoretic based metric, the Relative Information
Transmitted (RIT), may facilitate the assessment of the performance of automated speech
recognition (ASR) devices. The RIT provides a scalar value which may be employed in a
manner similar to the use of such traditional scalar measures as "percent correct. The
complexity of the recognition task is factored into the computation of the A/T. For exam-
ple, chance-level performance on a two-word recognition task and on a four-word recogni-
tion task both yield equivalent RIT values of zero, whereas the associated 'percent
correct’ performance on these tasks would be 50% and 25%, respectively. The RIT is an
entropy-based characterization of the ASR as a receiver in a communication channel in
that the distribution of input/output characteristics of the associated confusion matrix is
reflected in the generated measure. However, as with all figures of merit, the use of the
AIT must be coupled with an understanding of the specific task and application domain
associated with the assessment. Examples are provided which indicate that conclusions
drawn from the use of the RIT may not always be in agreement with those derived from

consideration of the 'percent correct’ performance of the same system.

INTRODUCTION

A necessary step in the evaluation of an
automated speech recognition device (ASR) is
the measurement of the objective faclors
associated with the operating characteristics of
the system. At this time, we assess the ASR,
in the sense of the Webster's (1989) definition,
which is ‘to determine the importance, size, or
value of. While both evaluation and assess-
ment refer. to the determination of worth or
value, we consider assessment to be associ-
ated with the measurement of the objective
system characteristics, in a sense sizing the
systemn, while evaluation is associated with the
more colloquial connotation of determining the
usefulness or appropriateness of an ASR for
an application. This paper considers the utility
of a specific measure which might be
employed in the assessment process, the
Relative Information Transmitted, or RIT, as
presented by Poock (1989) .

As an example of the evaluation process, it is
of interest to consider the use of an ASR in an
isolated-word,  small-vocabulary, speaker-
dependent speech recognition task. The out-
come of applying the recognizer of interest to
the defined task is typically reporied in a
manner which is a summarized version of the
test results, That is, the results of an isolated

word recognition test are reported in terms of
some single value thought to be descriptive of
the overall performance of the system, such
as ‘percent correct, rather than reporting the
recognizer output for each instance of every
input test word. While resolution is lost with
respect to the exact details of the test, the use
of such a figure of merit provides a mechan-
ism for easily describing the overall perfor-
mance of the system, in general terms. This,
in turn, allows for the comparison of ASRs on
the basis of this single measure. Alternatively,
replication of a test might be performed using
a single ASR, with either systematic variation
of system parameters or different databases
employed.

RELATIVE INFORMATION TRANSMITTED
(RIT)

Poock (1989) suggests that an information-
theoretic approach which was previously dis-
cussed by Woodard (1984) provides an
assessment measure which has a different
perspective than those often used by speech
researchers. In the type of isolated-word
recognition task previously outlined, the typical
measure of performance used to summarize
the results of the test is the ‘percent correct’
value of the response of the system to the test
inputs. This provides an estimate of the pro-
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bability of error characteristic of the system.
However, this measure provides no informa-
tion regarding the disiribution of the observed
errors, with respect to the set of inpuis to the
system under test. It is therefore suggested
that a metric be employed which takes into
consideration the performance of the system
when taken from the perspective of how much
information is input to the system, and how
much information is recovered from it.

If we consider the ASR as a communication
channel which accepts information as input,
and generates information as output, then we
can evaluate it in terms of its information
transfer characteristics. Let P( - ) will always
denote probability, and let X be a discrete ran-
dom variable (rv) with possible outcomes
X1, X2, ..., Xy and probability mass function,
pmi, px(-), ie.

Pxlx) = P(X=x)>0 i=12...N (1)
Px(x)=0

The self-information in a single event X which
has a probability of occurrence P(X) is
defined by

otherwise

h(X) =-log, P(X) &
The average self-information, or entropy, in
the pmf of X (or simply in X) is
N
H(X) = -5 px(x) loga px(x)) 3
i=1

By this definition, H(X) is a weighted average
of the self-informations of the events X = x;,
i=12,..,N.

Suppose that X and Y are jointly discrete rvs
with joint pmf pyy( - , - ), where

Pxr(xiy) = P(X = x,Y = y)) (4)
for i=12,..,N;j=12...M
Pxy{x.y;) =0 otherwise

Note that the marginal, or individual, pmfs of
X and Y can be obtained from the joint pmf.
Specifically,

M
Px{xi) = 21: Pxv(X.y;) (5)
i
N
priyj) = _21 Py (xi.yj) (8)

By applying (3) to py and pxy, we obtain the
entropies

M
H(Y) = -Z;, Prly;) logz py(y)) ]
j=
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N M
HXY}=~3.3, pxv(%i.¥;) 1082 Pxy(%;.¥)) (8)
==
Finally, we define the average mutual informa-
ionin X and Y by the weighted average of
the mutual informations in all the event pairs
X =z, Y =y; or
L. Py (Xy7)
H(X:Y)= X,¥)
(x:v) E':g, Py (%.5)) 092——”()(1) v )

By applying equations (3) and (5)-(8) to equa-
fion (9), it can be seen that

H{X:Y) = H(X) + H(Y) - H(XY) (10)

When we lock at the average mutual informa-
tion H(X:Y), we interpret this as the informa-
fion about the input io the system which is
provided by its output. Thus, if we know or
can estimate H(XY), we can assess the ASR
in an information-theoretic context. In order
that different systems may be compared
through the use of this measure of mutual
information, we nomalize the value of H(X:Y)
by the entropy of the input to the system. The
measure of information transfer thus gen-
erated is relative to the input to the system,
and is denoted the Relative Information
Transmitted, or RIT.
H(X:Y)
HOX) (11)
A more complete development of the basis for
this approach is given in Pfeiffer (1978) and
Woodard (1984). A discussion of the deveiop-
ment of the RIT may be found in the material
of Poock (1989), and reviewed in Smith
{1990).
From equations (5), (6), (3), and (7)-(11), we
see that to compute AIT, it suffices to have
the distribution pyy. However, in the con-
venient tabular representation of the collected
test data which we typically use, which is
known as a coniusion mairix, we have the dis-
tribution fxy. An example of the prototypical
confusion matrix is presented as Table Al in
the Appendix. Each confusion matrix reports
the frequency with which specific input/output
relationships occur in the course of the
assessment process. The inpuls to the sys-
tem are represented by the rows of the matrix,
while the responses of the system are
represented by the columns. The response
column labeled A is provided to enumerate
those inputs to the system which the ASR
rejected, or did not 'recognize’. This typically
means that some parameter value used in the

RIT =



recognition process has (or has not) exceeded
a specified threshold, and that the recognition
process for that input is aborted. A system
exhibiting perfect performance would generate
a confusion matrix which contains non-zero
values on the main diagonal only of the N-by-
N submatrix which does not contain the R
(rejection) column.

The confusion matrix has been augmented by
an auxiliary row and column which cortain fre-
quency subtotals used in the estimation of pro-
babilities of occurrence. Subtotals for each
row are indicated in the rightmost entry of
each matrix row (under rf) and subtotals for
each matrix column are indicated in the bot-
tom entry of each column (alongside cf). The
entry at the intersection of the ¢t row and the
it column, denoted TOTAL, represents the
total number of trials in the test represented
by the matrix.

We estimate the probabilities needed for the
computations in equations (7)-(8) through the
use of the following substitutions:

Bx(x;) = px(x;) (12)
Pry)) = pyly)) (13)
Pxv (XY} = pxv(X.y)) (14)
where
fx{x
prtox) = 22 (15)
f .
priy) = ’f,y’) (16)
f Y
prrly) = I 49

and n = total inputs.

Statistics associated with the performance of
the example systems are represented by the
computed values of H(X), H(Y), H(XY),
H{X:Y), and RIT. in addition, P(ERR)} and
P(COR) are provided, which are defined as
follows:

N M N
22X Exy (XY + 2R
== iz
P(ERR) = TOTAL (18)
P(COR) = 1.0 — P(ERR) (19)

EXAMPLE DATA

Examples 1-6, inclusive, are exactly those dis-
cussed by Poock (1989). Examples 7 and 8
demonstrate system characteristics similar to,
but different from, that seen in the data pro-

vided by Examples 1 and 6, respectively.
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1 ¥2 R t
X4 100 0 0 100
X2 4] 100 o] 100
ct 100 100 0 200
Table 1: Example 1
Y1 y2 | R n
Xy 25 25 0 50
X 25 25 0 50
ot 50 50 0 100
Table 2: Example 2
1 Y2 R n
Xy 81 9 0 80
Xz 9 81 0 90
ot 90 90 0 180
Table 3: Example 3
JA Y2 R n
X4 100 0 0 100
X 20 80 o] 100
ct 120 80 0 200
Table 4: Example 4
Y1 Y2 Y3 AR n
X4 40 40 40 0 120
X 40 40 40 0 120
X3 40 40 40 0 120
ct 120 120 120 0 360
Tabie 5. Example 5
Y1 Y2 Y3 R n
Xy 180 10 10 0 200
Xy 10 180 10 4] 200
X3 10 10 180 1] 200
ct 200 200 200 0 600
Table 6: Example 6
Y1 Y2 R n
X1 0 100 [ 100
X 100 ) ] 100
ct 100 100 1] 200
Table 7: Example 7




Y1 Y2 Y3 R "
FARN T 180 | 10 | 0 | 200
X2 10 10 180 0 200
X3 180 10 10 [¢] 200
ct 200 20 200 4] 600

Table 8: Example 8

Summary statistics associated with the perfor-
mance characteristics of the data of these
examples are provided in Tables A2 and A3 of
the Appendix.

Discussion of Examples

Example 1 shows that when no errors occur,
P(ERR) is 0.0 and RIT is 1.0, as is expected.

through the system.

Example 2 shows that when performance
occurs at chance level, RIT is 0.0. This also
is expected as no information has been
transmitted through the system.

Example 3 illustrates a system which has
P(ERR) equal to 0.1, where the eror
responses are equally likely in any of the input
classes. This system has a 2-item vocabu-
lary. The resultant RIT is approximately 0.53.
Example 4 is a system which alse has
P(ERR) equal to 0.1. The emor responses,
however, are associated with only one of the
two input classes. This locality cf error results
in a value of R/T of approximately 0.61, this
higher value reflecting the fact that the errors
are generated as responses to only one of the
inputs.

Example 5 illustrates a higher order system, in
that it utilizes a three-item vocabulary, rather
than two, as has been discussed to this point.
Like the system of Example 2, it demonstrates
chance level performance. Because it has
three input/output classes (excluding R), this
results in a P{ERR) of approximately 0.67.
As no information is transmitted through this
system, as in Example 2, it also demonstrates
a value of RIT equal to 0.0.

Example 6 shows a system which operates
with P(EAR) equal to 0.1, as do Examples 3
and 4. The value of AIT for this system is
about 0.64. When compared with Example 3,
which alse has a value of P(ERR) equal to
0.1, the effects of system complexity (order)
are seen in the value of RIT. While in the
cases of both Example 3 and Example 6 it is
true that the probability of error (0.10) is
evenly distributed, the higher order of the
Example 6 system yields a higher computed
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value of RIT, which is 0.53 for Example 3.
Example 7 illustrates a very inaccurate sys-
tem, yielding a value P(ERR) of 1.0. The
differences in the systems of Examples 1 and
7 are clearly not in the amount of information
which they transmit, it is in the nature of the
information. in either exampie, the input to
the system is known, with certainty, based on
the response of the system. Taken with this
perspective, it is reasonable to find that the
value of AIT for both systems is 1.0. How-
ever, the probability that the response given
comectly identifies the input to the system
could not be more disparate for these two
examples.

Example 8 demonstrates a system whose
data can be thought of as the
response of Example 6, where the entries of
the (sub)matrix have been rotated to the right
by one column. This transformation does not
change the relative distribution of the data
within the two-dimensional coordinate system
which the matrix represents, but rather, a shift
in the index associated with the entries in one
(horizontal, or row) dimension. The result of
this manipulation is that the H(X), H(Y),
H{XY), and resultant RIT values are
unchanged. The amount of information
transmitted by this system is the same as that
seen in the system of Example 6, and RIT
remains 0.64. However, the accuracy of the
two systems is enormously different. Whereas
P(ERR) for Example 6 was 0.1, it takes on a
value of 0.95 for the system in Example 8.

system

ADDITIONAL EXAMPLE DATA

To further investigate the utility of the AIT
assessment measure, this technique was
applied to the results of tests performed using
a typical ASR. The tabulated summary statis-
tics of these tests, denoted Examples 9-14,
inclusive, are presented in Table A4 of the
Appendix

3 Due o limited space a
eNgix. i

Due to limited space availability in
this paper, the confusion matrices for these
examples are not provided at this time, but
may be found in Smith (1990).

The recognition system utilized was a software
implementation of a dynamic time warping
(DTW) -based, speaker-dependent, isolated-
word recognizer under development at the
Integrated  Systems Laboratory (ISL) of
NYNEX. Training and test data were collected
at the ISL fadility under low-noise, high-
bandwidth conditions. The test protocol util-
ized an eleven word vocabulary, digits one
through nine, zero, and oh. The database was



nominally composed of twenty tokens per digit
per speaker. Two tokens of each vocabulary
item were used for training. The test phase
attempted recognition on each of the remain-
ing eighteen tokens of each digit.

Discussion of Additional Examples

Examples 9 and 10 have three and four
errors, respectively, out of a total of 198 trials.
As a result, the values of P(ERR) for these
systems differ by 33%. However, the values
of RIT associated with these two examples
are equivalent.

Examples 11 and 12 both have four errors out
of a total of 198 trials, yielding values of
P(ERA) which are identical. The different
values of RIT for these two systems does not
directly reflect this similar error rate.

Example 13 has two errors out of a total of
196 trials; Example 14 has seven errors out of
196 ftrials. P(ERR) for Example 13 is less
than one third of that for Example 14, as
would be expecied. What is not immediately
obvious is the finding that the vaiue of RIT for
Example 14 is greater than that for Example
13, indicating thai the systemn of Example 14
transmits more information in spite of its
higher error rate.

SUMMARY

The Relative information Transmitted assess-
ment parameter described by Poock (1989)
appears fo have many merits which suggest
that it should be included as part of the overall
evaluation process. This is particulariy true for
the case of isolated-word ASRs, where the
behaviour of this type of system is easily
characterized as a confusion matrix. For
example, as this measure reflects the com-
plexity of the task, in some sense, it may pro-
vide the basis to compare ASR performance
across applications which require different
sized vocabularies, However, this measure
should be used to supplement, rather than
replace, existing measures such as ’'percent
correct, as it addresses a useful, but different,
set of assessment considerations.

it is of note that the RIT reflects information
about the pattern of the errors made by ASRs.
Subsequent utilization of this information may
assist in the refinement of ASR design and
implementation, such as when early
identification of error occurrence localized to
specific vocabulary items is provided.
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APPENDIX

Y1 | Y2 Y w R
X1
X2
X fxv(X.¥;) Fx(X;)
Xpy .
ct frly)) TOTAL
Table Atl: Augmented Confusion Matrix 7 Xy
Example 1 | Example 2 | Example 3 | Example 4
P(ERR) 0.000000 0.500000 0.100000 0.100000
P(COR) 1.000000 0.500000 0.800000 0.900000
H(X) 1.000000 1.000000 1.000000 1.000000
H{Y) 1.000000 1.000000 1.000000 0.970951
H(XY) 1.000000 2.000000 1.468996 1.360964
H{X:Y) 1.000000 0.000000 0.531005 0.609987
RIT 1.000000 0.000000 0.531004 0.609987
Table A2: Summary Statistics: Examples 1-4
Example 5 | Example 6 | Example 7 | Example 8
P(ERR) 0.666667 0.100000 1.000000 0.950000
P(COR) 0.333333 0.900000 0.000000 0.050000
H{X) 1.584963 1.584963 1.000000 1.584963
H{Y) 1.584963 1.584963 1.000000 1.584963
H{XY) 3.169926 2.153959 1.000000 2.153959
H{X:Y) 0.000000 1.015967 1.000000 1.015967
| AT 0.000000 | 0.641004 1.000000 0.641004
Table A3: Summary Statistics: Examples 5-8
Example 9 | Example 10 | Example 11 | Example 12 | Example 13 Example 14
P(ERR) 0.015152 0.020202 0.020202 0.020202 0.010204 0.035714
P(COR) 0.984848 0.979798 0.978798 0.9797398 0.989796 0.964286
H(X) 3.455433 3.459433 3.459433 3.459433 3.459080 3.459090
H(Y) 3.485449 3.503489 3.485974 3.505207 3.458681 3.543424
H(XY) 3.542540 3.560579 3.571994 3.571994 3.515945 3.591750
H(X:Y) 3.402342 3.402342 3.373413 3.392646 3.401826 3.410764
RIT 0.983497 0.983497 0.975135 0.980694 0.983445 0.986029

Table A4: Summary Statistics: Examples 9-14
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