A DEMI-SYLLABLE BASED CONTINUOUS SPEECH RECOGNITION SYSTEM
WITH HMMS AND SYNTAX-CONTROLLED WORD SEARCH

Walter Weigel

Lehrstuhl fir Datenverarbeitung
Technical University of Munich

ABSTRACT - A system for recognizing continuous speech in a speaker-dependent
mode is described, where demisyllables serve as basic processing units. The acoustic-
phonetic decoding uses an explicit segmentation based on a pattern-matching
technique and vowel-context-independent HMMs. The sentence recognition uses
simplified word-HMMs and a Viterbi-algorithm. For the syntax-control a bottom-up and
a top-down strategy are compared, achieving sentence recognition rate of up to 74%.

1. INTRODUCTION

The aim of this contribution is to give a survey of our speaker-dependent continuous speech
recognition system with emphasis on the sentence and word recognition. The system is designed in
order to use some knowledge about speech and it's structure. The recognition of fluently uitered
speech is especially faced with two problems, namely the phenomenon of coarticulation and the word
chaining. The latter refers to the large search space which is built by the combination of all words,
whereby the number of words, the words themselves and moreover their boundaries are unknown.
The term 'coarticulation’ summarizes effects which are due to the principle of "economy of
articulation”. This means that in continuous speech the articulatory gestures of the intended phonemes
are actually not reached or at least overlap in time. Therefore the acoustic representation of
phonemes is highly dependent on their context, which should be borne in mind in recogpnition.

The presented system tries to exploit knowiedge about speech in different ways:

-Firstly larger processing units than phonemes are used, namely demisyllables. They contain the
coarticulatory effects between the phonemes of which they consist. Moreover demisyllables implicitly
include phonological restrictions because not every possible sequence of phonemes builds a vaiid
demisyltable.

- The syllabic structure of speech is regarded by localizing explicitly the syllabic nuclei. This furnishes
a time-grid on which the acoustic-phonetic classification is based as well as the word and sentence
recognition.

- The acoustic-phonetic decoding uses Hidden Markov Models which are trained in_context (different
vowel contexts) 1o get seme independence of coarticulation effects caused by vowels.

- The word lexicon congists of so called word-models (pronunciation models) which cope especially
with one coarticulation effect, namely vowel-elisions.

- Grammatical knowledge is exploited in order to reduce the combinatorial number of word sequences
during the word and sentence recognition.

2. SYSTEM-STRUCTURE

The structure of the system is indicated by Fig.1. The first step is a prepocessing which is performed
by a filter-bank. It results in 22 channels which model the human loudness sensation (Zwicker et ai.
1979). The output is sampled every 10ms and digitized by a A/D-Converter with a resolution of 16 bit.
Then follows the acoustic-phonetic decoding which itself consists of two ensuing modules. The first
performs the localization and classification of the vowels or diphthongs, i.e. the syllabic nuclei are
explicitly determined so that the segments between two succeeding time points always contain a final
demisyllable and an initial demisyllable. The second module classifies the consonant clusters of these
demisylables by means of stochastic modelling. This acoustic-phonetic decoding is described in more
detail in section 3. The word and sentence recognition is based on this sequence of phonetic labels
furnished by the acoustic-phonetic decoding. Two different approaches were investigated:

350



- A bottom-up strategy which uses the Earley algorithm (Earley 1970) and a Context Free Grammar to
control a Viterbi-algorithm proceeding from this label lattice.

- A top-down strategy where a modified A”-algorithm (implemented in PROLOG) fulfills the search and
starts by exploiting a Definite Clause Grammiar.

A detailed presentation of these alternatives is the subject of section 4 while section 5 gives some
recognition resulis of this system.
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Fig. 1 System structure
3. ACOUSTIC-PHONETIC DECODING

The first part of the acoustic-phonetic decoding localizes and classifies the vowels or diphthongs by
using the short-time loudness spectra as input data (point A in Fig. 1). An example of these data is
depicted by Fig. 2a. This is performed by computing a decision function where the syllabic nuclei result
in local maxima as Fig. 2b shows. The dotted vertical lines indicate the centers of the vowels which
build together with their labels the output of this module (point B in Fig. 1). The decision function itself
is computed as a quotient of a special loudness contour (so called modified loudness because the
high channels are substracted from the sum of the low channels) and a distance contour. The latter is
the result of a pattern maiching technique where reference vowe! patterns are matched with the
spectra ot the unknown sentence at each time point (10ms). The vowel or diphtong patterns were
chosen by hand from fluent speech and are limited by a rectangular window to 60ms. If at each time
point the minimum distance out of all matches is chosen and drawn over the fime a distance contour is
obtained. At those positions where vowels were uttered the contour shows obvious local minima
because at least one of the reference patterns fits well. Using the quotient of both contours improves
the quality and sharpness of the maxima. This method leads to an accuracy of up to 98,2%. Moreover
the classification can be easily performed by choosing the label of the reference vowel which yielded
the minimum distance at the indicated point. The recognition rate reached 88,5%.
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Fig. 2 Outputs of a) preprocessing, b) segmentation and c) classification

The time positions of the syllabic nuclei defines a time grid on which the second part of the acoustic-
phonetic decoding bases. The intervall includes two demisyllables namely a final and an initial one.
While their vowel parts have been already classified their consonant clusters are not known yet.
Special care was taken about coarticulation caused by the vowel, which influences strongly the
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consonants . Hence each consonant cluster is represented by a discrete HMM which had been trained
in different vowel contexts. This means in practice that during training each HMM has seen different
demisyliables which consist always of the same consonant cluster but of different vowels. This method
ensures a cerain independence of the vowe! context which can be demonstrated in experiments
where the recognition rate is increased by about 10% in conirast to the use of consonant cluster
models only (without training in context). In order io get an optimal classification of both consonant
clusters inciuded in the time intervali the focalization of the syllable boundary is essential. Therefore an
implicit segmentation was developed where all possible bounderies are tested during classification.

This module achieves recognition rates of up to 66,9% for consonant clusters where one has to bear
in mind that each consonat cluster contains usually more than one phoneme (see Fig. 2c) so that the
phoneme recognition is almost higher. This method and the investigations concerning the acoustic-
phonetic module are described in detail in Weigel (1990).

4. WORD AND SENTENCE RECOGNITION

The word and sentence recognition uses for each lexicon word HMM's too (so called word models)
which are drastically simplified (Ruske,Weigel 1986). The result of the acoustic-phonetic module
consists according to point C in Fig. 1 of a sequence of labels in the fixed sequence: initial consonant
cluster-vowel or diphtong-final consonant cluster. Therefore it is sufficient that the word models
represent each lexicon word on this symbolic label. Such a word model is in fact a pronunciation
graph, where especially vowel-elisions can be handeled by using skip-arcs over a whole syliable. The
models are trained with an unsupervised method by applying the acoustic-phonetic module to
sentences which include the words under consideration. In order to match the word models to the
actual label lattice the wellknown Viterbi algorithm is used. As a measure of similarity between a
symbol y of the word model and a symbol x of the sentence laitice we employ the a-posteriori
probability p{y|x) which can be estimated by observing the confusions of the acoustic-phonetic stage.
The question of interest is now how the single words can be recognized and how the huge search
space spanned by all permutations of words with, additionally, different lengths and boundaries can be
limited.

S word - levels
(length of a sentence)

15t word
2nd word
3" word

4t word

AN [1: goal node

Fig. 3 Decision tree

Fig. 3 should give an idea of this decision tree where in general at each level (equal to the number of
words) every lexicon word can follow if no constraints (e.g. syntactic or semantic ones) are appfied. In
order to to make use of syntactic knowledge two different strategies were investigated.

4.1 Bottom-up-strategy

The principle of the bottom-up-method is depicted in Fig. 4a. Starting with the result of the acoustic-
phonetic decoding the symbolic lattice with the form initial consonant cluster-vowel or diphthong-final
consonant cluster per syllable can be used to match the word models at each position. This can easily
be fulfilled by the Viterbi algorithm implemented as a one-stage DP for connected word recognition.
Here backtracking ensures that the optimal word sequence with respect to the used measure (in this

352



case the a-posteriori probabilities) is obtained. Indeed, any syntactic restriction on the search space
does not yet occur. As one solution the concatenation of the words during the Viterbi algorithm can be
influenced by limiting the number of possible words during each word transition according to the
syntax. Therefore it is necessary to know due to the processing direction of the Viterbi algorithm the
allowed predecessor words of a given lexicon word. To get this information a Context Free Grammar
(CFG) was used which describes by 40 production ruies a subset of German affirmative sentences
without relative clauses. The word lexicon size amounts to 132 words. An example of such a rule is

SATZ -> PP TSFV

which means that a sentence can consist of a prepositional phrase and a constituent with finite verb.
An Earley algorithm exploiting these productions generates for a given word it's allowed successors
according to the grammar. Since predecessor instead of successor words are necessary, a simple
trick is used: By reversing the rules the so called "reversed grammar” yields the predecessors when
the Earley algorithm is applied. This method corresponds to a word-pair grammar and has the
advantage that it may be processed once and all predecessors can be stored before the real
recognition task runs. As a disadvantage it does not guarantee recognition of completely correct
sentences in the sense of the used syntax because the word transitions are local and the history of the
sentence (i.e. the former words) is not considered. Thus the method is called "local Earley algorithm".
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Fig. 4 Syntax-control strategies

To avoid this a "global' version was developed where the predecessor words are determined
indirectly. Here, at each time instant when a word transition can occur all lexical words which end at
that point (with a final consonant cluster) are backtracked. Hence the history of each potential partial
sentence is known and the Earley algorithm computes for this partial sentence the next words
according to the grammar. These word successors are stored for each partial sentence. Looking for
the allowed predecessors of a given word means now to search this given word in the stored
successors. If it is found, this word can complete the partial sentence to which the store belongs. Now
the best of all possible partial sentences can be chosen and the word transition is performed. This
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global Earley procedure is more complicated but increases the exploitation of the syntax because it
considers the whole word sequence and thus insures absolutely correct sentences. Therefore the
sentence recognition is significantly improved as will be shown in section 5.

4.2 Top-down strategy

As indicaied by Fig. 4b an aiternaiive solution io ihe sentence recognition problem was aiso
investigated, namely a top-down strategy. There the recognition operates syntax-driven using a
modified A’-algorithm. It performs the sentence recognition from left to right by generating word
hypotheses, starting with all possible words at first position (level 1 in Fig. 3). These hypotheses are
evaluated by the above mentioned Viterbi algorithm with the difference that it is only used as a tool. it
computes the similarity measure for each hypothesis, matching it’s word model to a given start point in
the label lattice of the sentence to be recognized. Therefore it is not necessary to carry out any word
transitions or even backtracking. The whole control of the word sequences is done by the modified A
algorithm, which tries to find a solution to the decision tree. The usual A*-algorithm uses two cost-
functions: One function g for the real costs of getting from the initial node to the current node. The
second function h’ is an estimation of the additional costs h of getting from the current node to a
terminal node. In practice these costs follow directly from the applied similarity measure of the Viterbi
aigorithm. Hence the reat costs g to a current node are as follows , where S denotes the number of
syllables already processed from the start to this current node:

S . I I v v F F
g = X log plyiix;) + log ply ixy) + log plyjlx;)
i=1

with x; = classification result of syllable i, y; = symbol of a word model
| = initial consonant cluster, V = vowel or diphthong, F = final consonant cluster

Similiarly the estimated costs h’ to the terminal state can be computed because the acoustic-phonetic
classification result of the not yet processed syllables is already known. Therefore instead of a symbol
y of a word model the best case can be assumed where y is replaced by x itself. This assures that b’ is
always a lower bound and real costs h can only be equal {o W or will usually exceed h'. The formula is
as follows, where N denotes the number of syltables of the sentence to be recognized.

I I A F F
log pxjixg) + log p(x;lxy) + log p(x;Ix4)

Mz

h’' =
i

[}

S

During investigations of a diploma thesis (Schiel, 1990) this usual A'—algorithm turned out to have a
tendency of a breadth-first search until a first terminal node was found. The reason is that shorter
paths are preferred fo longer ones (which consist of more syllables) due to the addition of syllable
costs. This can be avoided by dividing the costs g by the number of already processed syliables S:

g* = g/s

Of course, this is no longer an optimal A'-a!gomhm. Hence another modification is necessary: After
the first terminal node (i.e. one solution) is found another pass is carried out. The real costs g are
again activated and used as a bound to check all other open nodes for lower real costs. So the
optimality is retained aithough the whole procedure is drastically accelerated.

The grammar used is a Definite Clause Grammar which can be implemented relatively easily in
PROLOG. It describes the same class of German sentences as the CFG. The number of rules
accounts to 32 which is a lower number ihan for the CFG because the rules include aitributes, e.g. for
the coincidence of casus or numerus of the constituents. As an example may serve:

satz -> np(Num, Pers, Kas=nom}, tsfv(Num, Pers)
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This expression means that a sentence can consist of a nominal phrase where the case is nominative
followed by a constituent with finite verb and that both have to coincide in number and person.

5 RESULTS

The system was tested with two different versions of 23 German sentences, which inciude the most
important German vowels and consonant clusters. The versions differ in the date of the recording. For
the training of the HMM‘s and the word models as well as for the vowel reference pattern generation 6
other versions of these sentences were used. The results are summarized in Tab. 1.

Method Perplexity ~ Sentence- Word-  Subst- Omis- Inser- CPU-
recognition tutions  sions tions time
[%] [%] [%]} {%]} [%] sl
Modified A™-algorithm 27 73,9 95,6 4,0 ] 0 628
Earley alg. giobal 96 45,7 87,9 11,8 0,3 18 176
Earley alg. local 120 37,0 85,8 14,2 0 3.9 492
Viterbi alg. (no syntax) 132 34,8 86,1 13,9 0 3,8 12

Tab. 1: Recognition results

Regarding the sentence recogrition it is obvious that the top-down method furnishes with about 74%
correctly recognized sentences clearly the best result. However, the reason for this superior
performance is not the method itself but the drastically lower perplexity of the Definite Clause
Grammar. I's attributes reduce the search space much more than the Context Free Grammar can do.
On the other hand it needs about a factor 4 of computing time compared with the global bottom-up
method. To get an idea of the gain in performance the Viterbi algorithm as connected word DP was
applied without syntax, where the recognition rate decreased to 35%. The expense of computing time
which is necessary for the syntactic knowledge exploitation is shown by the comparison of the 12s
CPU-time for the Viterbi algorithm alone and the 628s for the top-down method.

Itis interesting, however, that the word recognition rate by the use of syntax did not increase as far as
the sentence recognition rate. An analysis showed that sometimes relatively poor classification resuilts,
where false words fit well does guide the recognition with syntax in a false direction. On the other hand
the Viterbi algorithm alone is absolutly free and yields the optimal solutions with respect to the
classification result and the used similarity measure. If, however, one word was not recognized
correctly the whole sentence can be judged as false which leads to low sentence recognition rate.
Nevertheless it achieves about 86% word recognition rate.
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