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ABSTRACT - This study is a preliminary exploration of the acoustic-phonetic basis of the
distinction between 'strong’ and 'weak’ vowels. Segments were taken from a database of
continuous speech and were classified using critical band and formant frequency
parameters. The results show that up to 75% of strong vowels and just over 83% of weak
vowels are correctly classified, depending on the type of acoustic classification used.

INTRODUCTION

It will come as no surprise to Psycholinguists studying human word recognition that a major difficulty
for any machine recogniser of continuous speech is the automatic detection of word boundaries and
the segmentation of the acoustic speech signal into words. Although the acoustic cues for the
separation of minimai phrases such as ‘grey tie'/great eye’ are well documented (Lehiste, 1960},
there is still insufficient acoustic-phonetic knowledge to enable most word boundaries to be
automatically detected on a purely bottom up basis. Instead, word boundaries are hypothesised by
matching a phonemic or phonetic input directly to the lexicon (Harrington & Johnstone, 1987), or
else the phonetic/phonological segments which are recognised are subjected to pre-lexical
processing. In Church (1983) for example, some word-boundaries are derived by allophonic parsing
while in Lamel & Zue (1984) they are obtained from a knowledge of three-phoneme sequence
constraints which occur across word boundaries but not word-internally (see also Harrington,
Watson & Cooper, 1989).

The problem with a recognition model in which word boundary identification depends on narrow, or
very narrow (Church, 1983) phonetic units is that such units are themselves very difficult to
recognise. An aliernative strategy may be 1o resolve the speech waveform into much coarser units,
such as broad (Huttenlocher & Zue, 1984) or mid (Dalby, Laver & Hiller, 1986) classes, which can
be much more reiiably detected, and then to derive word boundaries from this coarser
representation, without analysing the speech signal intc narrower phonetic units. However, this
approach may be unworkable because broad or mid classes do not contain a sufficient amount of
information for word boundaries to be located in continuous speech (Harrington & Johnstone, 1987,
Harrington et al., 1989).

A possible way around this impasse is suggested by a human mode! of word recognition, developed
recently by Cutler in a number of papers (Cutler & Norris, 1988) which provides the mechanism for
the detection of many word boundaries from a fairly coarse segmentation of the speech signal into
'strong’ and 'weak’ vowels. Central to this model is the perception of word boundaries at strong
syllable onsets in English. In support of this model, Cutler & Norris {(1988) have demonstrated that
listeners are slower 1o detect the embedded word ‘'mint in /minteiv/ than in /mintef/. This slower
reaction time is predicted by the strong syllable onset model because /teiv/ is strong and /ta_[/ is
weak: accordingly, a word boundary is perceived before the former, thus destroying the phonetic
integrity of 'mint’, but not before the latter. A further argument in support of the strong syllable onset
model is based on the phonological structure of words in English. Studies by Cutler & Carter (1987)
and Harrington et al. (1989) have shown over 70% of words in English have initial strong syllables,
this percentage being a good deal higher when word frequency is taken into account (Cutler &
Carter, 1987). These statistics suggest that listeners would actually perceive a very large proportion
of word boundaries correctly if their perceptions were guided by strong syllable onsets. Compatibly,
Harrington et al. (1989) have shown that over 40% of word boundaries are correctly located in 145
transcriptions of continuous speech by a strategy which is similar in most respects to Cutler's strong
syllable onset model. Importantly from the point of view of automatic speech recognition, a hit-rate
of over 40% is also obtained when the transcriptions are encoded as broad classes. Thus the
relevance of the strong syllable onset model to the machine recognition of continuous speech is that
a large number of word boundaries should be detectable from a fairly coarse phonetic
representation of the speech signal.
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There are however a number of implicit acoustic-phonetic assumptions in Cutler's word recognition
model which need to be addressed in extending the model to include word boundary detection by
machine. Firstly, there is the problem of defining ’strong’ and ‘weak’' vowels. In Cutler & Norris
(1988), the distinction seems to be motivated largely be lexical/phonological considerations
{syllables with primary and secondary stress are always strong) but also sometimes by the phonetic
properties of the vowel which is strong if it is ‘full" (i.e. peripheral in the phonetic vowe! space) but
weak if it is central. Thus, the vowel of the first syilable in 'fantastic’, which is lexically unstressed in
some frameworks (e.g. Fudge, 1985) can be strong if it is realised as [a] but weak if it is realised as
a more central vowel. Quite how the exact cutoff is to be specified on what is possibly a continuum
from [a] to [3] that is affected by paralinguistic factors of tempo and ‘formality’ of speech style,
remains unresolved. Perhaps more fundamentally, it is not even clear whether the separation of
strong and weak vowels is feasible in many cases. For instance, the durational and spectral
differences between the vowels of ‘hid” (strong) and “abiljty’ (both weak), or between ‘foot” (strong)
and "annual’ (weak except perhaps in extreme citation form) are likely 10 be minimal in most cases,
or at least fraught with the same difficulties which confront the automatic recognition of very narrow
phonetic units.

The experiment reported in this paper is a preliminary investigation into the second of these issues,
that is the extent to which strong and weak vowels can be separated at an acoustic-phonetic level
of analysis. The procedure in this experiment is to characterise strong and weak vowels in a
multidimensional acoustic space based on an analysis of part of a digitised and hand-labelied
database of spoken British English (RP). The results that are reporied are for the classification of
strong and weak vowels from a different part of the same speech database, based on their
proximity to these multidimensional spaces. Results are also reported for the classes approximant
consonant and nasal consonant because these are classes with which strong and weak vowels are
also likely to be confused: clearly, the strong syllable onset model of word recognition is only of
value in the machine recognition of speech, not only if strong and weak vowels can be separated
from each other, but also if these two categories are distinguishable from other major segment
ciasses.

METHOD
Speech segments

The segments were taken from a database collected at the Centre for Speech Technology
Research, Edinburgh University (CSTR) between 1984 and 1989. At the time of the analysis, the
database included 98 phonetically dense sentences (e.g. "I'm naming one man among many") each
produced twice by four male speakers of British English, Received Pronunciation (RP). The
utterances were recorded in a sound-treated recording studio and digitised with 12-bit resolution at
16 kHz on a Masscomp computer. All utterances were subsequently segmented and labelied by
trained Phoneticians using digital spectrographic and transcription facilities of the speech signal
processing package Audlab. The segmentation divided the acoustic speech signal approximately
into phoneme size units (Williams & Dalby, 1987) with corresponding phonemic labels assigned. A
subsequent conversion of the labelling was necessary to distinguish strong from weak nuclei.
Strong nuclei included all nuclei with primary and secondary stress (e.g. ‘'manner’, 'perpendicular,
‘analogue’) of all content words and of one or two function words which are always produced with a
full vowel (e.g. ‘whiie’). The remaining nuclei were labelled as weak. The 98 utterances produced
twice by the four male speakers were divided into two groups, the training data and the
classification data. The training data consisted of all strong vowels (n = 1994), all weak vowels (n =
1427), all approximant consonants (n = 1045) and all nasal consonants (n = 939) that occurred in
two readings of 60 utterances each produced by the four speakers. The classification data included
all strong vowels (n = 1173), all weak vowels (n = 944), all approximant consonants (n = 745) and
all nasal consonants (n = 518) that occurred in two readings of the remaining 38 utterances each
produced by the same four speakers.

Acoustic parameters

There were four different conditions which depended on whether training and classification were
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carried out using formant data or critical band data, and whether the data were obtained from the
midpoint or from three different points in the segment. In the first condition, Fm (Formant midpoint),
the first three formant centre frequencies and their bandwidths were obtained for each segment at
the segment's midpoint using an automatic formant tracking procedure developed by Crowe & Jack
{1987). In the second condition, Ft (Formant, three points), formant frequencies and their
bandwidths were obtained at each segment’s 20%, 50% (midpoint), and 80% time points. In the
third condition, Cm (Critical band, midpoint), energy values in the first 18 critical  bands
{corresponding to a frequency range of 0.2 - 6.4 kHz) were obtained at each segment’s midpoint.
Following Chang & Cheung (1986}, the first critical band had a lower cutoff at 200 Hz in an attempt
to exclude fundamenta! frequency information. Amplitude variation was normalised by subtracting
the broadband energy in the 0.2 - 6.4 kMz range from the energy values in each of the critical
bands (Chan & Cheung, 1986; Klein et al., 1970). in the fourth condition, Ct (Critical bands, three
points), amplitude normalised critical bands in the same frequencies were obtained at the 20%, 50%
and 80% time points of each segment. The total segment duration was also included as a
parameter in each of the four conditions.

In summary, there are 7 dimensions in the Fm condition (3 formant centre frequencies, 3 formant
bandwidths, segment duration), 19 dimensions in the Ft condition (3 formant centre frequencies x 3
points, 3 formant bandwidths x 3 points, segment duration), 19 dimensions in the Cm condition (18
critical bands, segment duration) and 55 dimensions in the Ct condition (18 critical bands x 3 points,
segment duration).

Training and classification

For each of the four conditions separately, training consists of three stages: speaker-normalisation,
dimension reduction using discriminant analysis, and the calculation of class centroids and
covariance matrices.

Speaker-normaiisation consists of subtracting a speaker's centroid from the training data. A centroid
in this case is a vector of mean values, one for each dimension. For example, in the Fm condition,
a speaker centroid is a 7 dimensional vector of the means of the first three formant centre
frequencies, first three bandwidths and segment duration calculated over the segments of the
training data produced by the same speaker. Subtracting speaker centroids in this way has been
shown to be an effective and simple way of removing speaker-specific effects (Chan & Cheung,
1986; Klein et al., 1970).

Discriminant analysis is included in the training stage as a data reduction technique for reducing the
high dimensional space (e.g. 55 dimensions in condition Cf). Essentially, discriminant analysis
eliminates the redundant information that arises due to dimensions being correlated with each other
(Klecka, 1980). In the first stage of discriminant analysis, a set of coefficients, which are weightings
on the original dimensions, are derived and are used to transform the data to n - 1 dimensions,
where nis the number of different classes. Since in this case there are four classes (strong vowels,
weak vowels, approximant consonant, nasal consonant), the high dimensional spaces in each of the
four conditions can be transformed maximally to three new dimensions.

When a new segment is classified, it must first be speaker-normalised by subtracting the speaker’s
centroid derived from the prior training stage of analysis. Additionally, it must also be transformed to
a three-dimensional space using the coefficients which were derived at the training stage using
discriminant analysis. Once the speaker-normalisation and data reduction procedures have been
carried out, the Mahatanobis distance is calculated in the three-dimensional space from the new
segment to each of the class centroids obtained in the training stage of the analysis. The new
segment is classified as one of the four classes strong vowel, weak vowel, approximant consonant
or nasal consonant, based on whichever Mahalanobis distance is the shortest. All the statistical
calculations in this paper were achieved using the software package "Acoustic Phonetics in S
(Watson, 1989) which enables calculations to be made on the acoustic parameters relative to the
start and stop times of the segments assigned in hand-labelling the data.
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RESULTS

The results of the classifications in the four different conditions are shown in Tables 1 - 4. Turning
firstly to the formant data, the results show that 73% of strong vowels, 44.2% of weak vowels,
80.5% of approximant consonants and 73.9% of nasal consonants are correctly classified in the Fm
condition, in which formant frequencies and bandwidths were obtained only at the midpoint. The
results of the Fi condition, in which formant centre frequencies and bandwidths are additionally
obtained at the 20% and 80% points, show an improvement for all categories except approximant
consonants. In particular, there is a much higher correct classification score for weak vowels (71%)
in the Ft condition compared with the Fm condition (44.2%).

Turning now to the critical band data, the results show correct classification scores of 71.9% for
strong vowels, 75.1% for weak vowels, 71.8% for approximant consonants and 75.5% for nasal
consonants in the Cm condition, in which energy values in criical bands were obtained at the
midpoint. The corresponding scores in the Ct condition, in which critical band data was also
obtained at three time points, are 75% correctly classified for strong vowels, 83.3% for weak
vowels, 75.8% for approximant consonants and 81.7% for nasal consonants: these correct
classification scores are higher in all four classes compared with the scores in the Crm condition.

A comparison of the formant data (Tables 1 and 2) with the critical band data {Tables 3 and 4)
shows that better classification scores are generally obtained from critical bands. When formant
data and critical band data are obtained only at the midpoint (Tables 1 and 3 respectively), the
classification scores for the classes strong vowel, approximant consonant and nasal consonant are
quite similar, but there is a much higher correct classification score (75.1%) for weak vowels in the
Cm condition compared with the Fm condition (44.2%). When formant data and critical band data
are obtained at three points (Tables 2 and 4), higher correct classification scores are obtained in
the Ct condition for three categories (weak vowel, approximant consonant, nasal consonant) while
classification scores for strong vowels are very similar in both conditions.

DISCUSSION

The main aim of this study has been to carry out a preliminary investigation of the acoustic basis for
the separation belween strong and weak vowels. In the best of the four conditions examined, 75%
of strong vowels and 83.3% of weak vowels were correctly classified while 22.8% of strong voweis
were misclassified as weak and 10.5% of weak vowels were misclassified as strong. In the same
condition, less than 0.5% of strong or weak vowels were misclassified as nasals and less than 6%
of either strong or weak vowels were misclassified as approximant. The study is an open test in that
different segments were used in the training and classification stages and it is also semi-speaker
independent because the muitidimensional distributions for the four classes are based on speaker-
normalised segments from alf four speakers together, rather than from any single speaker.

The resuits of the study suggest that more reliable scores are obtained from critical band, compared
with formant frequency and formant bandwidth data. The reasons for this are still unclear. It may be
that the automatic formant tracking procedure produced unreliable values in a small number of
cases, or else that critical bands contain better discriminatory information for the separation of the
four major classes in this study. The study also shows that better classification scores are obtained
when parameter values are obtained at three time points rather than just the midpoint. it may be
possible to relate this finding to a number of perceptual and acoustic studies by Strange and
colleagues (Strange, 1989) which show that the transitions into and out of vowels are as important
as the acoustic vowel target for their identification. At this stage, such an interpretation must be
made with caution in view of the fact that the data in this study were obtained for the midpoint,
which does not always coincide with the vowel target.

An explanation for the misclassifications between the four major classes must await the outcome of
a more detailed evaluation. However, a further analysis of some of the data has shown that one of
the main sources of confusion is due to the substantial acoustic variability of schwa. Additionally,
many of the confusions betweens strong and weak vowels are caused by the variable classification
of /i/ and /ii/: thus strong vowels in °hit’, *hid" etc. were often classified as ‘weak’ while weak vowels
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in e.g.'city’ were often classified as 'strong’. This latter misclassification may be due to an increasing
tendency in RP to produce final /i/ as a long, rather than a short, vowel, which would cause it to be
phonetically more similar to strong vowels.

In summary, the study has provided some experimental evidence that a large proportion of strong
and weak vowels are acoustically distinguishable. The study is currently being extended to include
more speakers and a larger database. it may also be necessary to review the definitions of 'strong’
and ‘weak’ in the light of a more detailed analysis of the misclassifications that were produced in
this study.
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TABLE 1

Classified as: Strong Weak Approx. Nasal
Input

segments:

Strong 73.0 10.5 15.9 0.6
Weak 9.9 44.2 42.3 3.7
Approx. 3.5 12.1 80.5 3.9
Nasal 2.3 2.7 21.0 73.9

Classification scores for Fm condition

TABLE 2
Classified as: Strong Weak APProx. Nasal
Input
segments:
Strong 75.6 16.1 7.7 0.5
Weak 12.7 71.0 15.5 0.8
ApPpProx. 6.4 17.5 73.4 2.7
Nasal 1.7 10.0 13.9 74.3

Classification scores for Ft condition

TABLE 3
Classified as: Strong Weak ApPpProx. Nasal
Input
segments:
Strong 71.9 21.0 7.0 0.1
Weak 11.0 75.1 13.8 0.1
Approx. 5.8 21.2 71.8 1.2
Nusal 5.2 5.4 13.9 75.5

Classification scores for Cm condition

TABLE 4

Strong Weak Approx. Nasal
Input
segments;
Strong 75.0 22.8 2.0 0.2
Weak 10.5 83.3 5.9 0.3
APpProx. 6.6 16.5 75.8 1.1
Nasal 2.9 5.2 10.2 81.7

Classification scores for ¢t condition
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