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ABSTRACT - A multiple-linear regression modet of the relationship between iow-order LPC-
cepstral coefficients and vowel formant confours has been proposed by Broad and Clermont
(1989). However, less-than-perfect formant estimates generated using this method suggest
that the assumption of linearity underlying this model is questionable. in the present study, a
neural net, with the potential for developing mappings that provide a nonlinear partitioning of
large multi-dimensional space, is shown to produce substantially more accurate formant
estimates than is possible using Broad and Clermont's multiple linear regression model.
Because the neural net provides no indication as to the nature of the nonlinearity it has
discovered, we propose a new piecewise multiple-linear regression model of the cepstrum-to-
formant relationship. This parameiric nonlinear modet is thought to capture the quintessential
nonlinearity in the cepstrum-to-formant relationship because it produces first and second
formant estimates which are almost as accurate as those generated using the neural net.

INTRODUCTION

Pols, Plomp, and Tromp (1973) demonstrate that the first and second formant frequencies of steady-
state vowel data could be obtained directly from linear combinations of the log energy output levels of
a bank of eighteen 1/3 octave bandpass filters. Pols et al report correlations (based on 12 vowel types
averaged over 50 speakers) of near 0.98 between these linear combinations and the formant
frequencies. Pols et al warn, however, that their method is only capable of generating accurate
formant estimates for vowel formants which have been averaged over many speakers.

Pols’ finding inspired Broad and Clermont (1989) to find a model capable of deriving formant estimates
from linear combinations of the low-order LPC-cepstral coefficients on the grounds that these are
linearly related to the low-resolution log spectrum. Unlike Pols et al, Broad and Clermont attempt to
estimate the vowel formants of individual speakers rather than estimating vowet formants which have
been averaged over multiple speakers.

To produce an equation capable of estimating an individual speaker's formants from the speaker’s low-
order cepstral coefficients, Broad and Clermont compute a separate multiple-linear regression (MLR)
equation for each formant, Fj, j= 1 to 3, of the form:

A M =14
Fi= a0 + ¥ i 1
i=A
where ¢; is the ith LPC-cepsral coefiicient, and «; is the set of regression coefficients computed to

minimize the mean square error in estimating F. These MLR equations are found 1o produce relatively
robust but only moderately accurate formant estimates for the formants of individual speakers.

A possible problem with Broad and Clermont's MLR model, however, is that it assumes that there is a
linear cepstrum-to-formant relationship for each individual speaker. Yet Pols’ work only demonstrates
a strong linear relationship between filter-bank outputs and formants which have been averaged over
many speakers. It seems entirely possible, therefore, that a nonlinear relationship exists between the
fitter-bank outputs and formants of each individual speaker in the study by Pols et al. When these
filterbank outputs and formants are averaged over many speakers, the nonlinear relationship between
fiiterbank outputs and formants which exist for each individual speaker cancel one another out to
produce a relationship between average filterbank outputs and average formants which is
approximately linear. In estimating the formants of individual speakers, one should therefore question
the assumption of a linear cepstrum-to-formant reationship which underlies the MLR model.

in the present study, a continuous-valued output neural net (NN) is used to investigate whether the
cepstrum-to-formant relationship might be better described as nonlinear. The NN is capable of
learning virtually any nonlinear cepstrum-to-formant relationship which may exist. However, the
mapping learnt by the NN is nonparametric and is not, therefore, readily interpretable. In the present
study, formant estimates generated using the NN are compared 1o those generated by the MLR
model which assumes a strictly linear cepstrum-to-formant relationship. If more accurate estimates of
the formants are obtained using the NN, then this will be taken as evidence that the assumption of
linearity underlying Broad and Clermont’s MLR model is untenable.
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PRESENT STUDY
SPEECH MATERIAL

The speech database used in the present study was developed by Clermont (1990) and is the same
as that used by Broad and Clermont (1989). The database is composed of nine vowel types
produced by four Australian males in CVd context, where C=/ h, b, d, g,p,t,k/, andVis asin heed,
hid, head, had, hard, hod, who'd, hudd, and herd. There are five repetitions of each CQvd
monosylable from each speaker. The formant frequencies were obtained for 11 frames equally
spaced through each vowel for a total of 3465 frames for each speaker. The first three formant
contours were measured in three stages: (1) 14th order LPC autocorrelation analysis on Hamming
windowed 256-sample frames, (2) peak-picking on the LPC spectrum followed by formant tracking
(McCandiess, 1974), and (3) hand editing of the resulting candidates on the basis of estimated
bandwidth, formant ranges, and continuity. Following this, the values are averaged frame by frame
across the five repetitions of each CVd syllable 1o form a training set of 693 samples per speaker.

ARCHITECTURE OF THE NEURAL NET

The NN is a modified form of a fully interconnected, feedforward, muiti-layer perceptron (Lapedes and
Farber, 1987). It is designed to learn a function which derives the first, second, and third formants
simultaneously from a set of 14 low-order LPC-cepstral coefiicients. The net has an input layer, a
single hidden layer, and an output iayer. The input layer contains 14 inputs which correspond to the
14 unscaled LPC-cepstral coefficients in each sample. The hidden layer contains 25 hidden units.
The activation level of each hidden unit is a nonlinear sigmoidal function of the weighted sum of inputs
i i inear mapping which can be learnt by the NN is determined
both by the number of units in the hidden layer of the net and also by the number of hidden layers. A
single layer of 25 hidden units is used in the present study because this is found to produce optimal
formant estimates when the NN is trained on a set of three speakers and then tested on a fourth
speaker. The output layer contains three output units corresponding to the first, second, and third
formants. The activation level of each output unit ranges between 0 and 1 and is a /inear rather than
sigmoidal function of the weighted sum of the inputs to this unit.
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between the actual and estimated formant frequencies summed over the three output units and then
averaged across all training samples. Training of the neural net terminates when the error for each
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individual pattern falls within acceptable limits and when further iterations do not result in a further
decrease in the system error. After the NN has been trained, a set of test samples is presented to the
trained neural net. The activation levels of the three output units are converted back to formant
trequencies for each test sample and the root-mean-squared {rms) error between the actual formant
frequencies produced by the NN and the desired formant frequencies is calculated for the entire test

asat
St

EXPERIMENT 1: Determining whether the cepstrum-to-formant relationship is linear or nonlinear.
EXPERIMENTAL DESIGN

This database is divided between a training and test set in two ways: (1) representation (in which the
training set and test set are the same) versus prediction (in which the training and test sets ditfer), and
(2) single-speaker versus multiple-speaker settings. These two distinctions result in four experimental
conditions.

In each experimental condition, the models are trained on a set of training data and then evaluated on
a set of test data. Formant estimates generated by the models on the test data are then pooled over all
trials in the experimental condition. A single rms error measure for each formant is then calculated on
this pooled data.

In the two representation conditions, the MLR and NN models are irained and then tested on the
same data set. In the single speaker representation condition, the models are trained and tested on all
frames from a single speaker. There are four experimental trials in this condition corresponding to the
four speakers. The rms efror, shown in the left hand side of Table 1 below, indicates the ability of the
models to represent the formant data of a single speaker. In the multiple-speaker representation
condition, the data from all four speakers is pooled to form the data set on which the models are
trained. The same pooled data set is then used fo test the models. There is thus only a single
experimental trial in this condition. The rms error measure from this pooled data, shown in the left hand
side of Table 1 below, indicates the abifity of the models to represent the pooled formant data of four
speakers.

In the prediction conditions, the MLR and NN models are trained on one training set and then
evaluated on an independent test set. The training and test sets are derived from either a single
speaker or from multiple speakers. in the single-speaker prediction condition, four out of the five
repetitions from each speaker are used to train the two models. The fifth repetition from the same
speaker is then used to test the models. The process is repeated so that each repetition is used once
as the test set. The rms error on the pooled data from the 4 speakers x 5 repetitions = 20 experimental
trials indicates how well the models can predict a speaker’s formants when trained on independent
formant data from that speaker. in the multiple-speaker prediction condition, the models are trained
on the pooled frames from three speakers and then tested on the frames from a fourth speaker. The
rms error on the pooled data from the four experimental trials indicates the ability of the models to
predict a speaker's formants in the absence of any training data from that speaker.

RESULTS AND DISCUSSION OF EXPERIMENT 1

TABLE . The rms errors (in Hz) which result when the MLR and NN modeis are frained and
tested on the same data set (Representation) or on different data sets (Prediction) from
either a single speaker or from multiple speakers.

Representation Prediction
Single speaker Multtiple speaker Single Speaker Multiple speaker
Ft F2 F3 F1 F2 F3 Fi F2 F3 Ft F2 R
MLR 27 78 81 34 109 132 41 126 134 46 153 220
NN 21 45 50 19 52 68 31 64 79 35 8 149

From Table 1, it is clear that the NN model generates substantially more accurate formant estimates
than the MLR model for afl three formants in all four experimental conditions. These results indicate
that the NN has found significant nonlinearities in the cepstrum-to-formant relationship which are not
accounted for by the MLR model. The question remains, however, as to the exact nature of the
nonlinearity in the cepstrum-to-formant relationship.

This nonlinearity may be explicable in terms of a dichotomy between front and back vowels proposed
originally in a piecewise-planar model by Broad and Wakita (1977). Broad and Wakita observe that the
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first three formant frequencies of vowe! steady-states produced by an individual speaker cluster about
a two-part, V-shaped, piecewise-planar surface. The formants of the front vowels cluster about one
plane; the formants of the back vowel about the other. The intersection between the two planes is a
line of nearly constant Fa corresponding to the F2 of a uniform vocal tract of the same length as the
speaker under investigation. Although this critical Fo breakpoint between the two planes was
originally determined by inspecting a three dimensional plot of the three formants, Broad (1981)
suggests an alternative method of finding this breakpoint. He notes that the histogram of an individual
speaker's Fa frequencies is bimodal with the fewest number of Fo frequencies in the mid-range of
Fa. This Fp frequency corresponds to the constant F2 value which separates the plane about which
the front vowel formants cluster from the piane about which the back planes cluster.

Thus, Broad and Wakita's (1977) piecewise-planar model stipulates that a different linear inter-formant
refationship exists for the front and back vowels. if Broad and Clermont's cepstrum-to-formant MLR
model is applied to predict front-vowel and back-vowel formants independently, then the resulting
effect is that of a piecewise multiple-linear regression (PW-MLR) model. In other words, Broad and
Wakita's inter-formant piecewise-planar model and Broad and Clermont's cepstrum-to-formant MLR
model combine 1o form the new piecewise-multiple-linear regression (PW-MLR) mode! proposed in
this paper. In this PW-MLR model, separate MLR cepstrum-to-formant equations are calculated for the
front and back vowels.

EXPERIMENT 2: Modelling the nonlinear cepstrum-to-formant relationship
EXPERIMENTAL DESIGN

To test the validity of the PW-MLR model proposed above, samples are partitioned into front and back
vowel categories. This is achieved using histograms of F2 values in the steady-state portions of each
vowel nucleus (frame 6) to find the critical F2 breakpoint which separates the front and back vowels.
For all speakers in the study, the distribution of F2 frequencies is found to be bimodal with the fewest
F2 values occurring at a frequency of approximately 1600 Hz. Samples from the entire vowel
trajectory (frames 1 to 11) are assigned to the front categories, if their F2 value is greater than or equal
to 1600 Hz, or to the back category if their F2 values is less than 1600 Hz.

To derive formant estimates using the PW-MLR model, least mean squares planes of the general
forms given in the following equations are computed separately for frames in the front category
(Equation 2a) and back category (Equation 2b). Formant estimates for the formant, Fj, i= 1103, are
obtained using the MLR equations:

“ M =14

Fi= oo + X @ic for Fo > 1600 Hz (2a)
i=t

- M =14

Fi= Bo+ Y Bic for F» < 1600 Hz (2b)
=

where olp and Bp are constants, o and B; are the two sets of regression coefficients for the front
and back MLR equations respectively, and the set of ci'sis asingle setof 14 cepstral coefficients
which is used in both equations.

For each formant, formant estimates derived from the front and back MLR equations are pooled and a
single rms error measure is calculated for each experimental trial.

For the purpose of comparison, separate NN's are trained on samples in the front and back categories.
For each of the three formants, formant estimates derived from the two NN's are pooled to calculate a

single rms error measure in each experimental trial.

The PW-MLR and PW-NN models are evaluated over two experimental conditions. In the single-
Speaker representation condition, the models are trained and tested on the partitioned frame data of
a single speaker. In the multiple speaker prediction condition, the models are trained on the
partitioned data of three speakers, and tested on the partitioned data of a fourth speaker. The rms

models trained on unpartitioned data model are also shown in Figure 2. The rms error produced by
the PW-NN model are very similar to those of the NN model and are therefore not shown in Figure 2.
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RESULTS AND DISCUSSION OF EXPERIMENT 2
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FIGURE 2. The rms errors (Hz) which result when the MLR, PW-MLR, and NN
model estimate the first, second, and third formants in both a single-speaker
representation condition and a multiple-speaker prediction condition.

The PW-NN mode! trained on data partitioned into front and back categories generates formant
estimates which are only marginally more accurate than those produced by the NN trained on
unpartitioned data. This result indicates that the NN trained on unpartitioned data has captured the
quintessential nonlinearities in the cepstrum-to-formant relationship. Partitioning of the data into front
and back categories does not improve the formant estimates produced by the PW-NN model
because the NN model had already discovered the critical difference in the cepstrum-to-formant
relationship for front and back vowels.

When the models are required to represent the formant data of individual speakers, the PW-MLR
model generates estimates for all three formants which are substantially more accurate than those
generated by Broad and Clermont's MLR model. This suggests that the quintessential nonlinearity in
the cepstrum-to-formant relationship is indeed a distinct difference in the nature of the tinear
cepstrum-to-formant relationship for front and back vowels. Formant estimates generated by the PW-
MLR model for all three formant are about as accurate as those generated by the NN model. This result
suggests that within the front and back categories, the cepstrum-to-formant relationship is accurately
modelled as linear.

When the models are required to perform multiple-speaker prediction, the PW-MLR mode! generates
substantially more accurate first and second formant estimates than the MLR model but somewhat
less accurate third formant estimates. In the case of the first and second formants, the nature of the
piecewise-linear cepstrum-to-formant refationship is obviously very similar across different speakers.
This makes it possible to use the pooled data of three speakers to derive a piecewise-linear cepstrum-
to-formant relationship which will produce accurate first and second formant estimates for a fourth
speaker. In the case of the third tormant however, the nature of the piecewise-lingar cepstrum-to-
formant relationship appears to differ considerably from one speaker to the next. For this reason, a
piecewise-linear cepstrum-to-formant function is capable of producing highly accurate third formant
estimates when applied to single speakers. However a piecewise-linear cepstrum-to-formant
relationship derived using the pooled data of three speakers will not produce accurate formant
estimates for a fourth speaker. This explains why third formant estimates generated using the PW-
MLR model are more accurate than those of the MLR mode! when the models are trained and tested
on the data of a single speaker, but less accurate when the models are trained on a set of three
speakers and tested on a fourth speaker.
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SUMMARY AND CONCLUDING DISCUSSION

This paper has two aims. Our first aim is to determine whether the cepstrum-to-formant relationship is
linear or nonlinear. Since the cepstrum-to-formant mapping generated by the NN is capable of
producing substantially more accurate formant estimates than is possible with the MLR model, the
cepstrum-to-formant relationship is best modelled as nonlinear.

Our second aim is to defermine the precise nature of this nonlinearity. We find that the cepstrum-to-
formant relationship is best described as piecewise-planar; one plane describing the linear
relationship between front vowel formants and the LPC-cepstral coefficients, the other plane
describing a different linear relationship between back vowel formants and the LPC-cepstral
coefficients. The nature of this piecewise-planar cepstrum-to-formant relationship appears to be very
similar across speakers in the case of the first and second formants. However, the nature of this
piecewise-planar relationship appears to differ substantially across speakers in the case of the third
formant.

We propose that the piecewise-planar cepstrum-to-formant surface be computed using.a PW-MLR
model with a breakpoint at that F2 frequency which best separates the front and back voweis. This
PW-MLR model is capable of producing substantially more accurate formant estimates than is possible
using Broad and Clermont’s MLR model. The PW-MLR mode! produces formant estimates which are
about as accurate as those generated by the NN model. The PW-MLR model is to be preferred fo the
NN model however. The PW-MLR mode! requires the estimation of parameters which have a
straightforward physical interpretation. On the other hand, the nonparametric cepstrum-to-formant
mapping produced by the NN is not open to any form of theoretical interpretation.

The current problem with our new PW-MLR model is that it produces somewhat inaccurate third
formant estimates when the model is trained on the pooied data of three speakers and tested on a
fourth speaker. Although the relationship between the LPC-cepstral coefficients and the third formant
is piecewise-planar, the nature of this piecewise-planar, cepstrum-to-formant relationship appears to
differ across speakers. Research is already underway to try and model speaker differences in the
nature of the cepstrum-to-formant relationship for the third formant.

APPLICATIONS

The model proposed in this study is supervised in that a priori knowledge of correct formant
estimates is required to establish the cepstrum-to-formant relationship. However, the relationship
established through training on a set of known formants and LPC-cepstral coefficients can be used to
obtain relatively accurate estimates of unknown formants. These formant estimates could be further
used in an ASR system either as features, as parameters of a distance metric, or for speaker
normalisation purposes.
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