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ABSTRACT - A three layer perceptron network is used to classify the /i/ sound
using isolated words from different speakers. A classification accuracy of 97%
has been achieved. A map of phonemes is used to trace trajectories of utterances
using the self-organising neural network. A crinkle factor is proposed which
allows using the self-organising map to determine the inherent dimensionality of
a set of points. By this technique speech data has been shown to possess an
inherent dimensionality of at least four. A projection of the map and the speech
data shows how the self-organising map fits the speech space.

INTRODUCTION

Neural networks have existed for a long time [1, 2] and have recently enjoyed a resurgence of
interest, in particular their application to speech processing. If a set of utterances can be labelled
(ie. each frame is associated with a phoneme) then a supervised neural network like the multi-
layer perceptron [3, 4] can be used. Without making any assumption concerning the labelling
of the speech an unsupervised neural network, such as the Kohonen self-organising map {5, 6],
can be used to classify a speech utterance.

A three layer multi-layer perceptron network is used in this paper to classify one phoneme sound
using a training set of isolated words spoken by different speakers. Training is done using the
back propagation algorithm {7].

In this paper we also use the self-organising map to segment a set of isolated digits. The dimen-
sionality reducing properties of the Kohonen algorithm [5] are also examined. By measuring the
extent that the map is crinkled the inherent dimensionality of the training set can be gauged.
This is of interest in validating the beliefs of phoneticians that speech may be described with a
small number of parameters. Finally, we attempt a simple projection of the set of speech and
weight vectors and by performing limited rotations the way the self-organising map tries to span
the speech space can be seen.

NEURAL NETWORK PARAMETERS AND TRAINING SET

The speech data was obtained by sampling at 10 kHz using 12-bit quantisation. Speech frames
of 25.6 ms duration and spaced by 10 ms intervals were passed through a 256-point FFT. The
dimensionality of the data was reduced by averaging the FFT coefficients into 16 overlapping
mel-spaced intervals.

The multi-layer perceptron network had 16 input units corresponding to the 16 overlapping
mel-spaced intervals. One output unit was used to classify the input frame presented to the
network as the phoneme sound /i/ or not /if. The number of hidden units were varied from 1
to O units. The speech data consisted of single syllable isolated words equally divided between
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words containing the /i/ phoneme sound and those containing other voiced and unvoiced sounds.
These words were spoken by four male speakers producing a training set of around 6000 frames.

The network was trained by cycling through the training data and using the back propagation
algorithm to adjust the weights. A record of the correct responses as the network was being
trained was kept and used to determine the success of the training,

The self-organising map consists of a single layer of units arranged topologically as a grid. In this
paper a 10x10 rectangular grid (i.e. 100 units) was used. Training of this network was done by
presenting it with 16 input values from each consecutive speech frame from the utterance. The
speech data training set consisted of isolated digits, isolated words and telephone numbers from
a single speaker. This training set was different than that used for the multi-layer perceptron.
After training the neural units are labelled according to which phonemic sound they respond
to by presenting the map with speech frames from stationary phoneme samples. Neural units
which consistently achieved a best match with a particular phoneme sample were labelled with
that phoneme symbol.

RESULTS FOR THE MULTL-.LAYER PERCEPTRON

The multi-layer perceptron was trained for 100 cycles of the training set data for each iteration.
A response was correct if the output of the output unit was close to the desired response (0.9 for
frames labelled /i/; 0.1 for frames labelled not /i/). As training proceeded the learning of the
network stabilised and this gave the final training accuracy (ratio of correct responses / total
responses). The results are summarised in Table 1.

Table 1: Classification accuracy of the /i/ phoneme

Number of Accuracy
Hidden Units

1 92%
2 93%
3 96%
4 97%
5 97%
6 97%
7 97%
8 98%
9 98%

From the results the recognition accuracy improves as the number of hidden units increases.
Examination of the results showed that all misclassifications were for frames incorrectly classed
as /if, mainly for frames before and after regions classed as /i/. This is not surprising since
there was some doubt in the manual segmentation of these frames. There were also a few other
regions which were not /i/ but were classed as /i/ by the network. These may be due to voiced
phonemes which the network had difficulty separating from /i /.

RESULTS FOR THE SELF-ORGANISING NETWORK

The phonotopic map was presented with speech frames from the digit /three/. This was done
for both data from the training set and new data from different speakers. As each frame is
presented the winning neuron is highlighted. The winning neurons trace out a trajectory of the
utterance (as shown by Figures 1 and 2). The underlying reason to expect a smooth trajectory
is based on the fact that the human vocal tract varies slowly with time and this is reflected in
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slowly varying spectral frames. Since the phonotopic map orders the neural units by grouping
similar sounds together it is expected that as frames are presented that adjacent neural units
respond creating a smooth trajectory.

From Figure 1 it can be seen that for all speakers the units corresponding to t
and /I/ are highlighted. The trajectory starts off in a region which corresponds to :

unvoiced sounds (i.e. the /th/ sound) and ends in a similar region corresponding to the silence
at the end of the word. The phonotopic map is unable to resolve such silence and unvoiced
information, the effect is random movement of the trajectory which is clearly the case in Fighre
1. By deliberately removing the silence the trajectories shown in Figure 2 demonstrate that the
map can be used to perform limited segmentation of the speech data even when presented with
new data.

DIMENSION OF THE SPEECH SPACE

The Kohonen algorithm [5, 8] adjusts the weights in such a way that the weight vectors try
to span the input data space. For a two-dimensional self-organising map input data with an
inherent dimensionality less than or greater than two will result in trained weight vectors that
describe a highly crinkled or buckled map. We have proposed a measure of this crinkle {9] which
is 0 for a flat grid and 1 for a highly buckled grid. By extending the self-organising map to
higher dimensions the crinkle measure should be 2 minimum when the dimension of the neural
grid is the same as the dimension of the input data.

This hypothesis was tested by presenting the map with input data from manifolds of known

dimension, including planes, surfaces of spheres, and tori of various dimensions embedded in
R™. Results for both a two and three dimensional grid are shown in Table 2.

Table 2: Crinkle factor for known manifolds

Space | Dimension | Dimension of | 32x32 grid | 10° grid | 8% grid | 8% grid
of space. enclosing R"
Planel |2 3 0.004 0.016 - -
Plane2 | 2 12 0.004 0.017 - -
Sphere | 2 3 0.014 0.08 - -
2-Torus | 2 4 0.01 0.07 0.18 0.22
3-Torus | 3 6 0.12 0.027 0.037 0.097
4-Torus | 4 8 0.19 0.10 0.040 0.049

The planes, surfaces of the spheres and the 2-Torus are inherently two-dimensional and the
crinkle factor is a minimum for a 32x32 grid. The 3-Torus is a three-dimensional manifold
embedded in R® and the 10° grid exhibits the lowest crinkle factor compared to the 32x32, g4
and 8% grids. Finally the 4-Torus is a four-dimensional manifold in R® and, as expected, the
crinkle factor is a minimum for the 8¢ grid. In fact for these test manifolds the crinkle factor
calculated from self-organising maps of different dimensions exhibits a minimum at the expected
dimension even where the manifold is non-linear. This is an encouraging result for trying to
determine the inherent dimensionality of the speech space.

Speech data was tested using both 12 and 16 overlapping mel-spaced intervals as well as 12 and
16 LPC co-efficients. This was done to ensure that the results were not dependent on the size
of the initial speech space {12 or 16) nor on the method used to represent the speech signal
(FFT or LPC analysis). The speech samples were also chosen to be as general as possible.
Connected speech from six male and six female speakers was taken giving 16000 frames. These
frames represent the points in the speech space, either in R'? or R'®. Note that there is no
need to restrict the data to single speakers or isolated words as in the previous cases, since no
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Figure 1: Trajectory for the utterance /three/ on a 10x10 phonotopic map. Speaker jeff was
used for the training set, speakers tony and mike represent new data.

Figure 2: Trajectory for the utterance /three

/ on a 10x10 phonotopic map with silence regions
removed.
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segmentation of the speech is necessary. The results are shown in Table 3. The results were
compared with a set of points in R'? chosen at random (noise).

From Table 3 the crinkle factor using points from the speech space is a minimum for the 84 grid
and is higher for the 8% grid. The set of points generated randomly, however, have the lowest
crinkle factor for the 8% grid and this is expected to continue decreasing for higher dimensioned
grids.

Table 3: Crinkle factor for speech data

Space 32x32 grid | 10° grid | 87 grid | 8% grid
R™(noise) 0.27 0.21  [0.18 0.17
R¥mel speech | 0.09 0.05 0.04 0.06
R'®mel speech | 0.10 0.06 0.05 0.07
RTZLPC speech | 0.11 0.09 .06 0.08
R'LPC speech | 0.12 0.10 0.08 0.10

The result of using the self-organising map as a means of estimating the inherent dimensionality
of a set of points has been proven to behave as expected for manifolds of known dimensional-
ity. The results with speech [10] are very interesting and seem to indicated that the inherent
dimensionality of speech is at least four.

PROJECTION OF THE SELF-ORGANISING MAP

With two-dimensional input data it is easy to plot the input vector data set together with the
weight vectors from the neural grid. However, of real interest is the speech space which is of
dimension 16 as described previously. It would be very interesting to examine a projection of
this space onto a two dimensional screen together with the weight vectors from a trained two
dimensional grid.

Projection of any higher dimensioned data is simply done by plotting two of the vector compo-
nents. For the space R™ we can also rotate around n-2 axes (e.g. in 3D we rotate around one
axis, in 4D we rotate around two axes, etc.). The number of possible rotations is C.

The set of speech data and weight vectors in 12 dimensions were taken and the x1 and x6 (i.e.
the first and sixth component) co-ordinates were plotted on the screen. By patiently rotating
the picture different views of the neural grid structure were obtained. In most cases the shape
of the enclosing speech space changed as the picture was rotated. In all these instances the flat
nature of the neural grid was evident and, importantly, the grid itself followed the shape of the
speech space. This was a very reassuring result and is a very convincing demonstration that the
self-organising map is indeed mapping itself to the input training set.

The set of speech data points from an utterance was also examined. Consecutive speech frames
were analysed and the resulting 12 dimensional vector was plotted. Successive points were
connected to highlight the trajectory of the utterance in the speech space. This was tested for
the isolated digit /three/. The speech data points from the initial frames were closer to the
origin than those from the last frames. This is expected since the fricative /th/ has a lower
energy than the voiced /I/ sound. The density of the points on the trajectory were indicative
of sustained sounds. This was especially evident for the /1/ sound at the end of the utterance.
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CONCLUSIONS

The multi-layer perceptron provides a way of classifying speech sounds. Separate neural networks
can be trained to identify different phonemes. This results in a highly parallel architecture which
can be exploited by the correct hardware (i.e. transputers). Further testing of this network is
needed, especially using speech data which is not part of the training data, and using more
training data. The main bottleneck is expected to be obtaining sufficient labelled speech data
for training.

The phonotopic map provides a technique for segmenting speech sounds into their basic units.
Our map manages to segment the limited training set successfully. Further testing is needed
with more training data and different size/dimension maps.

Close examination of the Kohonen process using higher dimension maps has shown that the
crinkle or buckle in the neural grid becomes a minimum when the dimension of the neural grid

for a 8* grid indicates that the minimum number of features for representing speech is at least
four. No indication of what these features are is given at present and their identification is
needed.

Plotting the speech data points together with the self-organising map weight vectors has shown
that the Kohonen process does indeed try to approximate the speech space. Views of the
projection from different angles confirm the flat nature of the grid and its enclosure by the
speech data points.
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