Using Probabilistically Conditioned Neural
Networks to achieve Speaker Adaptation

David Bijl and Frank Fallside
Cambridge University Engineering Department
Cambridge, England.

15 October 1990

Abstract

Speaker Adaptation using Neural Networks is generally difficult be-
cause network weights are adjusted in accordance to a whole training set.
Introduction of new adaptation data provides a problem, because back-
propagation training would converge exactly on that test data, throwing
away previously learnt information.

If a neural network is formulated via a probabilistic approach, it is
possible to use concepts of maximum likelihood to adapt the parameters
of the network so as to accommodate changes without discarding valuable
information generalized from initial training.

Here, a probabilistic approach is demonstrated which allows speaker
adaptation in automatic speech recognition. The units of speech used are
phonic and prosodic.

1 Introduction.

Neural networks have provided performance in speech recognition tasks that
compares more than favourably with the traditional statistical technique based
on Hidden Markov Models (HMMs}) [7].

Given a large database of speech, a network can be trained such that the weights
defining the network yield minimum error pattern classification.

Every person has a more or less distinctive voice, which makes possible the
identification of a particular person from their voice, albeit prone to error {4].
In speech recognition, it is useful to exploit this property by allowing adaptation
of a speech recognizer to each speaker.

In order to achieve an understanding of what network adaptation might achieve,
it is useful to relate a traditional minimum risk classifier to a neural network.
Consider a set of independent classifiers, whose output g() is some function of

272

an input vector x and a set of learnt parameters p. An input is deemed to belong
to a class if the classifier modelling that class outperforms other classifiers.

gi(z, pi) = maz; (g;(z,p;)) = x belongs to class i

Consider the output as being connected to a set of internal nodes and inputs.
If a node is only connected to the nodes closer to the input than itself (ie to
lower nodes), the network is said to be feed forward. Such networks may be
trained by the back-propagation algorithm [8]. The input to hidden and output
nodes may include both the actual network inputs and lower node values. Most
commonly, only two layers are used. The first layer is a set of N4 hidden nodes
connected only to the N;, inputs. The second layer is a set of output nodes,
which connect only to the hidden nodes. Connection is conventionally achieved
by taking a linear weighted sum of the inputs.

{Nna \

fpiz)=7§ ;\ZPia’f:‘}

Nna Nin
=5 P> f(ziph)
j=0 k=0

A network need not be constructed by a linear sum. Indeed more appropri-
ate connection may be considered to be a functional approximator, represented
by a polynomial or even transcendental function. A quadratic or higher order
polynomial function provides a more general input space descriptor than a lin-
ear function, though orders higher than quadratic are not usually practicable
because the number of terms required becomes very large.

A quadratic operator is easily described by a matrix notation. Let as; weight the
contribution of the product of the i** and j** node, and define these weights by
a real symmetric matrix A°*. Similarly, let the i** hidden output be controlled
by weights defined by matrix A},

hi = f (2 APdz) 1)
output; = f (A* A°**h) (2)

Back propagation is easily adapted for this type of network [7], making training

of the network possible.

2 The Aim of Adaptation

Consider the ** output of a multi-layer perceptron. Let it be connected to the
outputs of a set of lower nodes h;, some of which may be input nodes, some of
which may be hidden.

273

output; = f ij.hj\
J

/
From a probabilistic viewpoint, it is useful to view this as a Bayesian deci-
sion approximator. If the network has learned, or generalised a pattern, the
probability of a sub-pattern, represented by hj, affecting the output should be
proportional to its probability of occurrence. This will indeed be true if the
normal error criterion is minimized with a sufficiently large training set if there
is a small overlap between classes.

The sub-patterns, denoted output;, may be input values themselves, or in-
put “constellations” defined by the space partitioning achieved by hidden node
weights. The latter case is not possible in two layer linear networks, though it
becomes so if super-linear nodes or mode than three layer networks are used.

In a traditional two layer MLP, network outputs are connected to hidden nodes,
which themselves are connected to input nodes. The sub-patterns represented
by these hidden nodes in the case of speech patterns are shapes representing
underlying data cluster concentrations. It is the re-positioning of these clusters
that is the principal aim of speaker adaptation.

3 Adaptation using back-propagation

Back-propagation adjusts weights most quickly for output nodes. As one moves
away from the output, learning occurs through the back-propagation of errors,
which is a second order effect.

This is observed in practice by the fact the network updates are orders of mag-
nitude smaller for hidden weights than for output weights. That it stagnates
as one moves from the output is a significant reason for why networks were
historically limited to two layers, and why fully inter-connected network have
been found to be more prone to local minima problems [8]. If a local minima
exists based primarily on a linear mapping of the input to the output then the
greater speed of “learning” of the weights connecting the inputs to the outputs
will cause this local minima to be a likely stable attractor for the system.

If back-propagation is used for speaker adaption, one is obliged to adapt very
slowly. In practice, this tends to be unsatisfactory, because the amount of
calibration data then needed corresponds to a very lengthy time.

Modification schemes to a basic network are possible. One scheime, based on &
quadratic perceptron node, attempts jointly to minimize the classification error
and the description volume of space encapsulated by a node. My experiments
have found this to be unsuccessful.

Ultimately one is obliged to realize where back-propagation works most quickly.
High-level information, stored in weights nearer the output than the input, is ab-
sorbed more quickly than low level information. A trained network if perturbed
in the output node weights would re-train quite quickly. A perturbation in the
hidden weights, however, is much slower to correct because the back-propagated
errors provide second generation knowledge.

274

It will be seen, however, that weights that define nodes which connect to the
inputs must be modified to achieve adaptation.

Consider the language adaptation problem. A new speaker has different sound
constellations, because his or her sound for a given vowel or consonant has a
different and new quality [6]. For a different speaker, the language spcken is
still the same and the statistics of that language, being more a property of
the language rather than the speaker, are largely invariant.! Given a Bayesian
approximator, where output nodes connect and weight input constellations, the
output node weights will remain relatively fixed, while the hidden node weights,
which describe the sound sub-group statistics, will vary from speaker to speaker.

Back propagation will most quickly adapt the output weights and therefore,
in any quick adaptation process will tend to model the a priori statistics of
the adaptation phrase more quickly than of the sound sub-group constellation
distributions that codify the underlying phone units. This leads to a reduction
in performance, which I have observed in previous experiments. An extreme
case of this occurs if a unit does not occur in an adaptation set: the unit will,
quite sensibly, be turned “off”. In this case, one models or adapts the output
statistics rather than inputs statistics.

Variations on back-propagation, such as volume minimizing in the nodes, suffer
from the this same problem.

4 A Probabilistic Framework for a Network

A alternative approach to back-propagation is to manipulate the hidden units
such that their weights are varied to accommodate a new speaker. Such an
approach allows adaptation to the input rather than the output.

A solution, as will be shown, is to recognize the duality of a gaussian mixture
and a constrained quadratic perceptron [1] and use the statistical insight to
initialise and adapt a neural model.

Consider also a gaussian mixture probability density function. A single gaussian
N in n dimensions is parametrized by a mean vector u and a co-variance matrix
Z. Letting ¢ superscript denote the matrix transpose operator and [%| the
determinant of matrix X, then the probability of input vector o is

e 3(o=p)'=7 (o)
@m)"* /3]

A gaussian mixture R is obtained by adding a weighted set of gaussian together,
scaled such that the function integrates to unity. The weights wy, affect the
mixture of these gaussian. The functions parameters, comprised of w, 4 and ¢,
are denoted by

N(olp,X) = 3)

Speaker idiosyncrasies will induce slight alteration to the overall personal phoneme statis-
tics of a language, but most current day speech recognition tasks constrain or dictate the
grammar removing room from this small possibility of variation.

275

Rj(0) =D wjmN(oltj,m, Tj,m) 4

Consider a two-layer quadratic perceptron, as described in equation 1. Equa-
tion 4 may be written as a simplification of the network equation. Firstly, the
inputs must be augmented by a constant to achieve a threshold and to allow the
mean and variance to be condensed into a single matrix. Setting the weights
that describe the output, 4°**, such that they operate in a linear fashion re-
quires that all element are set to zero except those in the last row, and only
those connecting to the corresponding mixture are used, as defined by weights
wj m. Also, the functional operator f(z) must be set exp(—r).

This simplification causes all mutual information to be lost. In deciding how
much evidence exists that input = belongs to output class ¢, instead of utilising
information from all hidden nodes, ie all gaussian estimators, only within class
information is used. Furthermore, the output weights are also constrained by
their stochastic nature.

One can assign the hidden nodes as specified by a conventional maximum like-
lihood training scheme to define the nature of the network hidden nodes. New
weight values can be derived for the output weights by a one pass process as
long as output values are available.

In the case of speech recognition, output values may be assigning the noisy val-
ues of 0 or 1, according to whether or not the input is deemed to correspond to
the output class. If the hidden node values are augmented by their squared value
and a constant, a least mean squared error solution may be computed. It may
be shown that this is a least mean square error solution to a quadratic approx-
imation to a Bayesian classifier [5]. Arguably better criterion exist than MSE,
but a good solution is computable in one pass of the data. Back-propagation
network solutions require hundreds of passes of the training data, making this
approach very attractive.

Given a network with hidden nodes that are derived from a within class infor-
mation training method, one can easily adapt a network for a new speaker by
instigating the same process (maximum likelihood) for re-estimation. One is
not hampered by a lack of data for certain classes: such classes need not be
modified.

When sufficient in-class information exists, the relevant mixture functions may
be re-iterated, and the set of of hidden nodes pertaining to that class up-
da}t;ed, By using this process during training and during running, adaptation is
achieved.

5 Experiments.

Experiments conducted were based on the TIMIT database [3]. The raw speech
was preprocessed to produce the following parametrization. FFT spectrum were
used for the cepstral generation, because these have been found to be superior
to linear predictive cepstrae for the recognition of stop consonants [1]. This is
presumably due to the presence of zeros in stop consonant spectra [2].

276

10 cepstral coefficients, based on the FFT spectrum.
Zero crossings

total energy, up to 8000Hz

sonorant energy, 60-5000Hz

low frequency energy, 60-400Hz

high frequency energy 650-3000Hz

the ratio of low frequency to high frequency energy.

® © e e

@ @

The labels of the TIMIT database were each used to train a gaussian mixture
function by a maximum likelihood method. The mixtures were trained on all
speakgrs of the training set, and then adapted to each speaker where data per-
mitted.

A network classifier was then assigned the task of broad band labelling. More
precisely, each TIMIT label was assigned to one of vowel, nasal, stop, fricative or
silence. Three hidden nodes were assigned to each TIMIT class, and five outputs
were connected to all hidden nodes and the inputs. Inputs are presented, with
the potential of context frames, to allow the utilization of spectral change.

Qutput classification was computed on the basis of the maximum scoring clas-
sifier, as previously described.

Two experiments have been conducted, and the last two are being conducted.

No. | Non-Adaptive Adaptive
1 | Male, one dialect Same speakers, different sentences
2 | Optimize the minimum number
of adaptation frames.
Male and Female, same dialect. | Same speakers, different sentences
4 | Male, one dialect Male speakers, different dialect

[}

5.1 Results and Discussion

The results some improvement. Prosodic labelling is probably not an ideal task
for adaptation, and better results might be expected on a phonetic labelling task.
Experiment 1 may be seen as the limiting case of allowing adaptation only if
an infinite number of adaptation frame are available. Results for experiments 3
and 4, along further results, will be presented.

Minimum Frames Required. | Recognition Performance
5 64.8
10 65.3
20 65.9
o0 65.1

The results show some improvement, though further experiment are required
to find the best possible number of adaptation frames required before a hidden
node is re-estimated.

277

