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ABSTRACT - This paper presents the results of an
experiment which applies a neural network approach to
the problem of speaker identification. We restrict
ourselves to the analysis of the 11 non-diphthongal
English vowels. The neural networks were trained on a
set of cepstral coefficients derived from an LPC
analysis. Results are presented which show that this
approach compares favourably with more traditional
methods.

INTRODUCTION

Neural networks have been applied widely to the problem of speech
recognition. However, to our knowledge they have not been used
for speaker recognition.

Recent work by the Speech Processing Group at the University of
Auckland has focused on vowel sounds as a basis for speaker
identification (Miles & Guillemin, 1989; Miles, 1989). This is
of particular interest in forensic applications where the amount
of acoustic information for analysis is limited, and often
severely corrupted by noise and transmission effects. Since
vowels occur fregquently and with high energy they are an obvious
choice in these situations. Our previous work based the
identification on the vowel formant frequencies, and used an
Inverse-Variance-Weighted distance measure for template
comparison. A major drawback with this approach is that the use
of this weighting function is an a priori decision, and one which
may well not be optimal.

As an extension to this work therefore, we have investigated the
use of neural networks in this context. Of particular attraction
is their ability to form optimally weighted mappings of their
input parameters, thus obviating the need for the selection of
an a priori weighting function.

Atal (1976) has compared a number of different spectral
representations of the speech signal and found that the LPC
cepstral coefficients, when used with a Mahalanobis distance
measure, gave the best speaker recognition performance. More
recently (Soong and Rosenberg, 1988) have investigated the use
of weighted and unweighted cepstral coefficients in speaker
recognition, and have drawn similar conclusions. They have also,
interestingly, concluded that the instantaneous spectral features
of the speech signal carry more speaker relevant information than
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transitional spectral features. We therefore chose to use the
cepstral coefficients, derived from an LPC analysis of the speech
waveform, as the input parameter set for the neural networks.

The neural networks operate on the unweighted cepstral
coefficients, converging automatically to an optimal solution.
The convergence method is the back-propagation learning algorithm
of the Multi-Layer Perceptron (MLP) (Rumelhart and McClelland,
1986), which is a neural network model well-suited to pattern
recognition. This model has been widely applied to speech
recognition with much success (Elman and Zipser, 1988; Waibel et
al, 1989). Another method that has achieved good performance in
speech recognition is the Learning Vector Quantisation algorithm
of the Kohonen Self-Organising Feature Map. This has also
recently been applied to speaker identification (Bennani et al.,
1990). In the opinion of the authors, though, this method is a
vector quantiser rather then a neural network.

The purpose of the experiments described in this paper is to see
how well the MLP performs in terms of speaker identification. wWe
compare these results with our earlier work and show that the
performance of the MLP based identification is somewhat superior.
It should be pointed out, though, that we cannot make a
definitive comparison because the same data set has not been used
in each case.

EXPERIMENT DETAILS
Data Collection

Our test population comprised 9 male subjects of New Zealand
origin. Recordings were made of the 11 non-diphthongal English
vowels (represented by the phonetic symbols /i/, /I/, /£/, /&/,
/af, /2/. /3/, /u/, /A/, /o/ and /U/) embedded in 4 consonantal
contexts: h/v/d, b/v/d, d/V/d and g¢g/V/d. The reason for using
different contexts is to achieve context independence of the
analysis by accommodating possible coarticulatory modifications
to the vowels. The complete set of 44 utterances were recorded
8 times for each subject over 2 sessions separated by a number
of weeks.

Data Processing

These recordings were low-pass filtered to 4.5kHz and sampled at
1okHz. A 512 sample segment was extracted from the stationary
vowel portion of each utterance. Each segment was pre-emphasised
by a first order digital network with a transfer function,

H(z) =1 - z™*

These were then Hamming windowed prior to performing a standard
l4th-order LPC autocorrelation analysis. From the LPC
coefficients a set of 14 cepstral coefficients were recursively
calculated.

Soong and Rosenberg (1988) used 8 cepstral coefficients in their

analysis. They point out that the higher order cepstral
coefficients are as important as the low order coefficients in
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their ability to discriminate between speakers. For this reason
we decided to use a slightly larger number of coefficients (14
in our case), though the greater the number of inputs to the
neural network, the longer it will take to train.

Training the Neural Networks

The Multi-Layer Perceptron has a layered feed-forward
architecture and is trained in a supervised manner using labelled
training patterns. For these experiments we used an MLP simulator
written in the C programming language that was developed at Bath
University. The simulations were performed on a UNIX-based
digital computer.

The MLP used in our experiments had 14 real valued inputs (one
for each cepstral coefficient), 9 units in a single hidden layer,
and 9 ocutput units (one for each subject).

We used 11 networks, one for each of the vowels in our data set.
Half the data for each vowel was used for training the networks
(4 contexts x 4 rounds x 9 subjects = 144 training patterns for
each vowel) and the other half for subsequent testing (144 test
patterns per vowel).

The networks were trained using the standard back-propagation of
error algorithm (Rumelhart and McClelland, 1986) . A network is
initialised to a random internal state. Training involves
presenting a pattern from the training set at the inputs
simultaneously with the desired pattern at the outputs. The
error between the actual and desired outputs is calculated
automatically and propagated back through the network. The
strengths or weights of the internal connections in the network
are then modified such that this error is minimised. For any
particular training pattern the desired output pattern would have
a high signal (> 0.75 x full scale) on the output corresponding
to the correct subject and a low signal (< 0.25 x full scale) on
all the other outputs. Intrinsic to this algorithm is a learning
rate which can take a value between 0 and 1 and affects the speed
of convergence to a solution. If this parameter is set too high
an optimal solution may not be found or the state of the network
may oscillate indefinitely. Previous work at Bath University has
shown that a learning rate of 0.5 is a good compromise.

In our experiments the networks converged to a stable state after
about 1000 presentations of the training data set, which on our
computer (an HP 9000 Series 300) took typically one hour for each
network. In some cases the networks failed to learn the correct
association for one or two of the training patterns.

After training, each of the networks was tested by applying the
test patterns in turn to the inputs, causing an output pattern
to be generated. The output with the highest level then
identified one of the speakers. This method is valid because we
wished to perform speaker identification from within a known set.
In the case of speaker verification it would be necessary to
ensure that the highest output was above a pre—determined
threshold and all others were small by comparison.
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RESULTS AND DISCUSSION

The results for each of the 11 vowels and 9 subjects are
summarised in Table 1. The vowel or phonemic class is listed down
the left side, and the speakers or output classes are listed
along the top of the table. Each entry represents the percentage
of the test patterns that the network successfully associated
with the correct speaker.

VOWEL Example 1 2 3 4 5 6 7 8 9
word mm ph ag tr ga mn mt pm fe

i* heed 88 38 94 75 75 88 100 | 100 | 100
I hid 94 19 94 63 50 81 100§ 100 | 50
e head 94 63 88 56 75 88 100 | 100 { 100
e had 56 56 100 31 75 69 75 100 | 100
a* hard 100 63 81 88 75 63 100 25 | 100
o] hoard 75 6 50 50 100 69 100 75 100
3" heard 56 25 56 75 25 50 160 75 75
™t who’d 75 31 160 88 100 81 75 100 | 100
AN hud 69 | 56 |100| 94 | 75 | 38 [100 ] 50 | 75
o hod 94 19 25 44 75 50 100 50 75
u* hood 100 38 88 69 100 69 100 | 100 | 100
Average Rate 82 37 80 66 75 68 95 80 86

Table 1 : % Identification rates for each vowel for each
of the nine subjects

‘optimum vowel set using formant fregquencies alone
*vowels that achieved average identification rates of > 75%

Unfortunately some of our subjects were not available for the
second recording session. For this reason subjects 5, 7, 8, and
9 had only 44 patterns in the test set (i.e., 4 for each vowel).
The results for subjects 1, 2, 3, 4 and 6 are statistically more
valid having 16 patterns for each vowel.

Speaker identification rates averaged over all the vowels vary
between 37% and 95% across the speakers. Performance within a
particular vowel category varies between 6% for the worst subject
and 100% for the best.

At the outset these results might seem poor by comparison with
other speaker identification experiments, but it should be
emphasised that in this case the identification process has been
restricted to an analysis of vowel sounds alone, which is a
severe 1limitation. Further, the figures given relate to
identification based upon a single vowel sound. In practice one
would base the identification on a number of vowel sounds, which
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will significantly improve the overall identification rates.

It is interesting that the optimum vowel set from these
experiments does not accord with that deduced from experiments
based upon formant frequency (Miles, 1989). This implies that the
cepstral representation contains other information in the speech
signal that is important in discriminating between subjects. The
average identification rate over all vowels and subjects for
these experiments was 73.7%, whereas for the experiments using
formant frequencies it was 66.9%. One might conclude that the
cepstral coefficients contain more speaker related information
than the formant freguencies.

FUTURE WORK

Using the same data set we intend to run a speaker identification
experiment using the Kchohen Self-Organising Feature Map with the
1LVQ2 training algorithm to see how performance compares with the
MLP model. We also intend to investigate identification
accuracies based upon groups of vowels rather than on single
vowels.

CONCLUSION

The main purpose of these experiments has been to determine the
degree to which individual vowels can be used to distinguish
between speakers. In our opinion the neural network approach has
given us a more objective method of assessing this compared with
more traditional techniques.
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