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ABSTRACT - The paper discusses results from a series of experiments on isolated word
recognition using neural networks {mulfilayer perceptrons). It shows that high recognition
acouracy in simple tasks can be achieved with very crude signal processing. It also shows
that suitable incorporation of some classical pattern recognition techniques (distributed
representation of network output with rows of Hadamard's matrix and optimised quantisa-
tion of input) can provide significant improvement in the system performance.

INTRODUCTION

Automatic recognition of spoken words is one of the important domains used for the application and testing
of artificial neural networks. These provide the ability for a simple parallel hardware impiementation of a
speech recognition system. Although a number of successful experiments have been reported in the litera-
ure (e.g. Gold & Lipmann, 1988; Lang, Waibel & Hinton, 1990}, it is clear that a lot more work has to be
done before artificial neural networks can become practical in speech recognition. in particular, in this pa-
per we intend to show that classical pattern recognition techniques (coding theory and vector quantisation,
in our case) could possibly, if incorporated appropriately, offer a worthwhile enhancement to the perfor-
mance neural hetworks.

In a series of introductory experiments conducted at Telecom Research Laboratories recently, the particu-
larly simple structure of multi-layer perceptrons with mask hidden units was used for the task of isolated
word recognition. We should stress that the prime objective at that stage was to test and refine a particular
neural network algorithm, to eventually build a reliable speech recognition system. Thus, the signal pro-
cessing element was kept very simple (and did not include any dynamic information of the speech wave-
form, in particular), yet still able to provide interesting results.

In this paper we are especially interested in mask perceptrons which are virtually a kind of single stab high
order network or classical polynomial classifiers (Duda & Hart, 1969). Our special interest in mask percep-
trons stems from their potential for simple and efficient implementation in digital hardware (Kowalczyk, Au-
mann & Cybulski, 1991) and the existence of relatively efficient generation techniques {c.f. Cybulski,
Ferrd, Kowalczyk & Szymanski, 1989).

In order to simplify hardware implementation, mask perceptrons assume quantised inputs, necessitating
the resolution of the discretisation when dealing with continuous inputs, usually by employing classical
vector quantisation results and information theory (cf. IEEE Trans. Inf. Theory 28 (2), 1982; Kowalczyk &
Szymanski 1989). On the other hand the use of distributed output encoding (spread spectrum techniques
in transmission theory) could simplify in some cases the network structure by reducing the required num-
ber of outputs for a given problem. Additionally the network may ufilise the error correcting capabilities of
the code to improve network performance in the presence of noise (Chiueh &Goodman, 1988).

NEURAL NETWORK BACKGROUND

From the early days of machine learning research, the potential advantages of polynomial classifiers (high
order networks) for pattern recognition was recognised (c.f Duda & Hart, 1973). However, the high order
networks were, in practise, not used much, mainly due 1o lack of efficient techniques to cope with the com-
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binatorial explosion in the number of high order terms. in the current wave of neural network activities, a
number of researchers have tumed their attention to high order networks again, motivated by a variety of
reasons including an increase in memory capacity, the capability of high order terms to embed prior knowl-
edge about the properties of a domain of interest like shift and scale invariance (Giles & Maxwell, 1988),
the optical implementation of associative memory (Psaltis, Park & Hong, 1988), the universal capability of
the structure to implement any predicate (Minsky & Papert, 1969). Our personal interests are additionally
fueled by the recent availability of efficient training procedures based on empirical selection or even gener-
ation of useful terms and the relative simplicity of possible VLS! implementations, especially in the form of
modulo perceptrons which are natural adaptations of single siab high order networks to the case of a fimit-
ed set of available weights {Cybulski, et al., 1989, Kowalczyk, Aumann & Cybulski, 1990).

NETWORK FOR ISOLATED WORD RECOGNITION

The neural networks considered in this paper are adjusted to the specific domain used in experiments: iso-
lated word recognition. The specific architecture is shown in Figure 1. The heart of the system is a mask
perceptron, .. a single slab high order network (Giles & Maxwell, 1987) with binary inputs. It consists of
three layers: a layer of “input quantisers” (IQ's) converting continuous outputs of frequency filters to a
string of bits, ¥y, Xa,....Xp, & hidden layer of logical conjunction units (higher order monomials, Xj; Xj5 Xjg)
and the output layer (connected via links with real weights, Wi e , to some units of the previous two lay-
ers for the purpose of “normal summation” of the weighted achvatié‘)ns of these linked units). Mathematical-
ly, the mask perceptron implements a set of polynomiais:

VAX{s XoyeuXn) =W +z(f1'""jk) Wi{i1""'ik) Xj1 X+ Xk ffori=1,..., mand xq, Xa,....%, €{0, 1}).

The selection of weights, hidden units and quantisers for the mask perceptron is within the domain of suit-
able training.

A final processing stage is added on top of the mask perceptron in one of two ways. The first of these is
known as centralised encoding. In this case the number of mask perceptron output units is equal o the
number of words, with each output unit ideally assigned 1 for the word to which it corresponds and -1 for all
others. In the second case, known as distributed encoding, each input pattern is assigned a row from a Ha-
damard matrix (c.f. Chieueh & Goodman, 1988 and MacWilliams and Sloane, 1977) whose size deter-
rmines the number of output units. These patterns of £1’s have maximal Hamming distance between each
other, so that for two patterns to be confused at least one of them must have a large number of errors.

The distributed encoding of the output units, if implemented, requires a final stage appearing as a "Ham-
ming net” as well as a prior threshold level. In initial experiments a number of different perceptron output
non-linearities (ONL's) for the threshold level prior to the “Hamming net” were tried. These were functions
as follows: (A) a single step ) = sgn(t), (B) a two step fity = sgn(t) for |tj > e and f{t) = O for tise and (C)
ramp f(t) = sgn(t) for t| >1 and t) = t for |t} € 1.The ramp function consistently showed the best perfor-
mance and hence was utiised in further experiments.The “Hamming net” is used to calculate the cross-
corelation of the threshold-modified perceptron resulls with the ideai code patterns, designated by the Ha-
damard matrix, for each word. The weights between “non-linearities” and “correlation” units in Fig. 1 are
equal to +1's corresponding to the designated distributed patterns.

Regardless of whether centralised or distributed encoding is used we employ a “top N selection” layer to
order the activations of the previous layer by value and select the N most active outputs as the final result
for a given value of N.

The speech samples consist of 20 positive real numbers each in the range 0 - 327. The IQ layer is em-
ployed to achieve a smaller range of discrete inputs. In the selection of guantisers, the problem is to
choose a small number of useful thresholds from a large number of possible candidates. Two particular ap-
proaches were used here. The first being to partition the range of each filter output into uniform segments.
Whilst the second technique involives the use of a generalisation of relative entropy for partitions, to the
case of overlapping coverings (Kowalczyk & Szymanski, 1989).The choice of n;thresholds for the /~th filter
is made sequentially, with the objective of minimising the relative entropy for each step.

The task of training the mask perceptron involves the selection of hidden units {monomial terms) and then
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Figure1. Architecture of isolated word speech recognisor used in experiments. The “Hamming net” lay-
er is optional and used when the distributed encoding method is implemented.

of weights. The monomial terms are selected empirically, at each stage reducing the potential mean-
square-error between the desired distributed or centralised representation vector and the actual mask per-
ceptron output for a given training set. Candidate terms are produced using a set of simple heuristics that
recursively build up terms from those previously selected. Having selected a final set of monomial terms,
the weights are computed using the Penrose-Moore pseudo-inverse technique. in some cases retraining
was applied, meaning that the weights were recalculated for a different set of instances from the set used
for term selection.

EXPERIMENTAL RESULT .

To illustrate the performance of the techniques, we present in Fig. 2 results of certain experiments. They
cover three different types of experiments in recognition of spoken words: (I) 10 digits by a single speaker
(trained for the first 20 rep./word, and optionally retrained for an extra 40 rep.iword with a test against the
full set of 110 rep./ word providing 1100 instances), (if) 10 digits spoken by four speakers (3 males and 1
female; 110 + 80 + 75 +70 = 335 rep./word giving 3350 instances; trained for the first 10 rep./word/speaker,
and optionally retrained on an extra 10 rep./word/speaker with a test against the full set) and (iii) 60 words
by a single speaker (40 reptn./word producing 2400 instances used in testing of which 1200 = 60x20 rep./
word was used for training). The words were spoken in an office environment. The samples were fimited to
500 ms duration, band limited between 300 Hz and 3300 Hz, sampled at 8 kHz and digitised to 16 bit accu-
racy. The digitised information was then passed through a bank of 20 audio filters emulated by a DSP
hardware board. The filter outputs were then stored and used for training on a SUN sparc workstation, in a
batch type mode. In these experiments we generated the networks in a series, where each mask percep-
tron was constructed typically by appending new terms to those previously selected. The selection process
was controlled by the adjustment of some parameters, so, in particular the network size was set automnati-
cally {c.f. Figure 2). For distributed encoding we used: ten rows of a 16x16 Hadamard matrix in experi-
ments of types (i) and (i), and 60 rows of a 64x64 Hadamard matrix in experiments of type (iil). In each
experiment requiring ONL's (apart from Figure 2a) those of type (C) were used. (Note that for centralised
encoding no ONL's are required.)

The six curves in Figure 2a represent the performance of one series of mask-perceptrons using 5 entropy
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Figure 2. Result of experiments in recognition of 10 digits by a single speaker, {a) and (b}, by one and four
speakers (c) and of 60 words by a single speaker (d).

selected IQ's, trained for experiment type (i) using the distributed encoding technique. Different ONL’s, (A),
(B)with £ = 0.2 and (C) were used highlighting the improvement possible by a correct choice of these non-
linearities. The solid curves display the performance of networks additionally retrained (against 800 in-
stances).

Figure 2b represents the performance of six different series of mask perceptrons, trained and retrained for
experiment type (i) using the centralised encoding technique. Different numbers of uniform-and entropy se-
lected QLs have been used, as indicated in the figure.

In Figure 2¢ we display the performance of three different series of neural networks (three pairs of trained-
only/ trained-retrained curves: 1/2, 3/ 4 and 5/ 6) developed for experiments of types (i) and (ii). We used
here different sets of 5 Ql's for each series, as indicated in the table.

Figure 2d shows results for two series developed for experiments of type (iii). We have allowed several er-
ror counting methods here, namely a misclassification occurs if the correct alternative is not inciuded in the
“top N selection” for N = 1, 2 and 5 respectively. Solid lines are for a series using centralised encoding and
forthe series using distributed encoding we use broken lines. In each case the same 15 uniform QL's were
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used.
DISCUSSION OF RESULTS

In Fig.2a we observe that the ramp non-linearity (C) produces consistently the least misclassification. This
result could be attributed o the observation that (C) preserves the largest “amount of information” con-
tained in the mask perceptron outputs. However, when in some experiments we passed unchanged per-
ceptron outputs to the Hamming net, the results were much worse than with any of these non-linearities;
thus some non-linearity is needed, although the optimal shape is still to be determined.

Figures 2b and 2¢ show that training with carefully selected IQ's gives an improvement of the order of 20-
50% over the uniform assignment. Notice that initially for a small number of 1Q's the benefit of the entropy
thresholds is not apparent, but that as the number of accepted monomials increases, the curves with en-
tropy selected thresholds converge to a smaller misclassification than their corresponding uniform counter-
parts. We must point out that these curves have been obtained using retraining on the mask perceptron,
and while the same conclusion can generally be made for the case of no retraining, we did encounter a
case in which the opposite was true. More work needs to be done to resolve this problem and other selec-
tion technigues such as k-means clustering etc. should be tried.

We observe that retraining typically improves the performance of the neural network, in soms simple cases
even significantly (c.f. curves for single speaker in Figures 2a and 2c). However, in the case of 4 speakers
(Fig. 2¢) the improvement after retraining was negligible. This is perhaps due to some improved term gen-
eration heuristics that were used in this case, a relatively good level of generalisation was achieved during
training. Comparison with the other two curves in this figure obtained for the much simpler task of recogni-
tion for a single user using less efficient term generation heuristics seems to support such an explanation.
This aspect obviously requires further investigation.

Referring to Fig. 2d there are several interesting points to be made. Firstly, it is apparent that the misclassi-
fication using the distributed encoding technique is always less than or equal to that of the centralised en-
coding technigue independently of the number of mask perceptron monomials used. This can be explained
in the following way: the task of the mask perceptron is to approximate as closely as possible the represen-
tation string of the word which the input instance denotes, in many cases this will not be done exactly lead-
ing to several possible candidate representation strings being alternatives to the correct one intended. The
task of the *Hamming net” is to correlate this error infected patiern with each true representation string,
The greater the difference between these true representation strings the greater the chance of correlation
with only one of the true strings. Thus the Hamming distance between pairs of distributed encoded strings
is 32 bits in our case, contrasting the Hamming distance between pairs of centrally encoded strings being
only 2. This also explains why the distributed encoding curves appear to converge to a minimum faster
than their corresponding centralised encoding counter-parts. We also observe that, as the number of terms
increases the larger mask perceptron becomes more accurate in its own classification task and so less is
left for the Hamming net to do.

it is worth stressing that the signal processing used in these experiments was extremely simple and yet,
overall, quite satisfactory accuracies were achieved (especially good in single user digit recognition). This
strongly suggests that the combination of a mask-perceptron classifier with a more sophisticated feature
extraction system could lead to significantly better recognition rates. As a rough guide, Lang, Waibel & Hin-
ton (1990) use in their isolated word recognition experiments, discrimination between B, D, E and V, a
carefully preprocessed 192 number spectrogram; optimal speaker independent classifier-of ftalian digits
over telephone line, reported by Gemelo & Mala (1990) was using 240 cepstrat and energy coefficients.
This is obviousty much more sophisticated than our 20 raw filter outputs, however we do not intend true
comparison to be made here since the comparison of efficiency of different network training algorithms is
dubious, unless the same data and preprocessing is used.

CONCLUSIONS

Results show the usefulness and suitability of mask perceptrons in the area of speech recognition. Such
systerns should be tested with different, more sophisticated feature extraction techniques, on a variety of
tasks, including different aspects of isolated and continuous speech recognition, integration with speech
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understanding systems etc., since the structure is capable of simultaneous processing of both numerical
and categorical attributes on an equal footing.

Experiments show that merely using a more efficient output representation (a distributed encoding) can in
some cases significantly improve the generalisation ability of neural network classifiers. Another advan-
tage of distributing outputs is mulliplexing. Using a set of pseudo-orthogonal vectors with significant mutual
Hamming distances {e.g Gold sequences; Gold 1867) instead of orthogonal Hadamard matrix rows, one
can represent efficiently multiple classes of interest by a relatively small number of network outputs. Cur-
rent results show that this is feasible.

A careful choice of input quantisers was found to produce significantly better results: in some cases 25-
50% drop in misclassification. This warrants more effort in this direction, especially including the testing of
difierent statistical quantisation methods in order to determine the most appropriate method for a given
problem.

Distributed encoding and a careful choice of input quantisers, proved to enhance perfomance of our net-
works, readily lend themselves to application with other feed forward networks {e.g. back-propagaiion} and
results for this should be obtained in the near future.
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