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ABSTRACT

Application of neural network architectures to the problem of digit recognition is investigated
using two different forms of a multi-layer perceptron. The problem of digit recognition is
studied from three points of view: firstly, selection of input features representing the spoken
digits; secondly, minimisation of training time; thirdly, optimisation of the architecture of
neural nets.

INTRODUCTION

Our work on digit recognition addresses the issues of the best form of preprocessing of digit data for
input to a network, and the optimum network architecture for this work. Eleven classes of isolated
digit utterances spoken by female speakers were selected for this study. They are “zero”, “one”,
“wo”, “three”, “four”, “five”, “six’, “seven”, “eight’, “nine” and “naught”. The multi-layer perceptron
neural network based on a conventional back-propagation training algorithm has been found fo present
problems in achieving a set of weights which satisfactorily classifies the training data (Zhang, 1989).
Furthermore, the training speed was also very slow. A new fast training algorithm (Brent, 1990) provided
a potential advantage in training time and also assisted in the choice of the number of hidden units.

SELECTION OF INPUT FEATURES FOR DIGITS

The first issue to be determined is the selection of features of the spoken digits which may be used
to compare reference templates against an unknown input utterance. Features must be selected in
the time domain and in the spectral quality domain. We selected low-order cepstral coefficients to
represent spectral quality based on the work of Davis and Mermelstein (1980). In the time domain a
traditional approach for isolated utterance recognition is to dynamically “time-warp” each input utterance
so that by a process of stretching and compressing various parts of the input utterance the best match
with a reference utterance is made, according to some parameter such as energy {e.g., Clermont and
Butler, 1988). The input frames can then be sampled from a common time-base either using regular
or irregular sampling. In the latter case the input utterance can be sampled at fixed points determined
by features of the utterance. In selecting input features for these digits, the approach we adopted
was to choose a small number of frames located at defined points within each utterance and to use
parameters calculated from these frames as the input features. We propose to select these features
on a digit by digit basis. However we have not yet achieved robust feature selection from a wide range
of speakers and, therefore, for the purposes of this paper a simplified method is used.

In our current system, using this simplified input feature set, the training and classification behaviour of
alternative neural net architectures are studied. If a pair of frames positioned at the energy peak in the
strongly voiced vowel section and at the point where the energy has fallen 1o half its peak value are
used, then information about the vowel (or diphthong) and also (with the latter frame) about movement
of the articulators towards any following consonant is acquired. Similarly, a frame positioned at the
half-energy point ahead of the peak energy will capture information about movement of the articulators
away from any leading consonant.

Thus, for the current phase of this project we use three frames chosen at the peak of voiced energy
and at the leading and trailing half-power points. Identifying significant frames in this manner avoids
any requirement for dynamic time warping. There is a potential ambiguity here with respect to the digit
“seven”, which has two vowels, but all the examples we have inspected from our speech database
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have significantly higher energy in the first vowel and so this does not present a problem in our initial
experiments. Should such a problem arise in other data, two models of the digit "seven” could be used,
one having a dominant first syllable and the other a dominant second syflable.

DATA ANALYSIS

The digits were originally recorded with a sample rate of 16, 000 samples per second and a low-pass
anti-aliasing filter with a —3dB point of 7.2 kHz. The data used have been resampled at 8, 000 samples
per second following digital low-pass filtering to 3.6kHz. In the recording set, each digit is repeated ten
times by five different female speakers.

The speech data were first segmented using an energy and zero crossing segmentation process (Cler-
mont, 1990) in order to isolate individual digits. After each utterance was segmented and stored into
one file, the data were analysed using a frame of 256 points and a 50% overlap between adjacent
frames. Each frame was subjected to a 10th order LPC autocorrelation analysis using a pre-emphasis
factor of 0.98. The 10 low-order cepstral coefficients were then derived from the reflection coefficients.
The gain of the LPC process was stored for each frame as a measure of the overall signal energy.

Once all frames had been processed, a group of three frames was chosen with one at ihe “peak” energy
and two frames before and after which were closest to half this energy. LPC cepstral coefficients for
these three frames were then writlen to a text file to be used as input data for the neural network.

THE MULTI-LAYER PERCEPTRON USING BACK-PROPAGATION TRAINING

The architecture of the MLP used is a two-layer perceptron with N continuous valued inputs, M outputs
and one layer of hidden units. The architecture is shown in Fig.1.

output tayer

hidden 1ayer

input layer

Fig.1

The back-propagation training algorithm is an iterative gradient algorithm designed to minimise the mean
square error between the actual output of a muiltilayer feed-forward perceptron and the desired output
(Lippmann, 1987). The network weights are initially undetermined, and a back-propagation algorithm
is employed to adjust the weights. The weights are initialised by setting them to small random vaiues.
The algorithm goes through the network iteratively, changing the weights in each layer according to the
following formula:

wiglt +1) = wi;{t) +78; 2+ alwy {t) ~ wiz{E — 1))

where w;;(t) is the weight from hidden node ¢ (or from an input) to node j at time ¢, «;’ is either the
output of node ¢ or is an input, » is a gain term, §; is an error term for node j, and « is a smoothing
factor which reduces sharp changes in the weight space. The range of o is: 0 < v < 1. Hf node j is
an output node, then
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where d; is the desired output of node j and y; is the actual output. If hode j is an internal hidden
node, then

5]‘ = Zjl(1 — z,-‘)Z&cwjk
k

where k is over all nodes in the output layer.
RESULTS USING A MULTI-LAYER PERCEPTRON

An initial experiment was performed to determine the optimum number of hidden units. The number of
hidden units was varied from 10 to 80 and the performance of the network was monitored. Performance
increased significantly when ine number of hidden units increased up to 30 but showed no significant
increase for more than 20 hidden uniis. in order to minimise the training time, 30 hidden units were
used.

Two methods were adopted to choose training and testing data: (1) four utterances for each class of digit
from a given speaker were seiected for training and a different utterance for testing, this was named the
4U-1U speaker-dependent test; (2) one uiterance from each of four different speakers for each class of
digit were selected for training and another utterance from the fifth speaker for testing, this was named
the 4F-1F speaker-independent test. Different numbers of initialisations (random starting points in the
search space) were tested with each task in both speaker-dependent and speaker-independent tests.
The results of the speaker-dependent test shown below give the average and range of four runs, and
the results of the speaker- independent test shown below give ihe average and range of iwelve runs.

Speaker-dependent : 4U-1U

Training Testing 'Hidden U. Ave.Recog.Rate Range

spki spki 30 100% 100%-100%
spk2 spk2 30 90.33% 81%-100%
spk3 spk3 30 75.00% 63%-90%
spk4 spk4 30 58.50% 54%-63%
spks spk5 30 76.50% 72%-81%

Speaker-independertt : 4F-1F

Training  Testing Hidden U.  Ave.Recog.Rate Range

spk2345  spki 30 67.5% 63%-72%
spki245  spk3 30 83% 54%-72%
spk1235  spk4 30 49.50% 45%-54%
spk1234  spks 30 67.5% 54%-81%

With the experiments using back-propagation training in an MLP, we found that obtaining convergence
was a major problem. For example, we failed to train the group of speaker one, speaker three,
speaker four and speaker five in our 4F-1F speaker-independent test even with more than fifteen
different initialisations. Another drawback of the back-propagation algorithm is that the training time
could be very long and we sometimes couldn't get convergence in a practical time. Furthermore,
different starting points in the search space could lead to quite different results as evidenced by the
range listed above.

It is not clear whether this lack of convergence was due to the back-propagation algorithm used, and
specifically its termination criterion, or to the data itself. In a similar study by Millar and Hawkins (1990),
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this problem did not occur, but in that study both the data and the algorithm used were different. We
are investigating this issue.

Another suggestion made by Millar and Hawkins (1990) is that variables whose effect cannot be pre-
dicted should be allowed to vary randomly and generate a distribution of results adequately

predicts the range of performance of the system. Hence we report both average recognition rate and
the range of recognition rates achieved using different starting points in the search space.

THE FAST TRAINING ALGORITHM

A new training algorithm called Fast Training Algorithm has been introduced by Brent (1990). The
architecture used to implement the fast training algorithm is a three-layer net with two hidden layers
and one output layer. The basic idea of this approach is to determine an architecture and weights for
an MLP by developing a decision tree which is optimised to discriminate between the classes of data
inthe training set. A trained-MLP is then constructed from the parameters of the decision tree. It is not
necessary to specify the number of hidden units in advance, rather a minimum number is determined
by this process.

Suppose the training set is S, then we may construct a decision tree T with ¢ nonterminal nodes and
t+1 leaves. The concept of the fast training algorithm is o find a hyperplane H fo split the training
set § into two sets Sp and .5, in an optimal way. Several criteria can be employed in the optimisation,
which are then applied recursively fo S, and S;, as often as necessary to construct a decision tree
T which correctly classifies all points in S. One criterion shown by Brent te give good results is to
maximise

K
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where m; ;. is the number of training points of class & in S; and K is an upper bound on the number
of classes. On each recursion, the search for the next hyperplane is initiated using a vector of random
weights. These weights are determined from a single seed at the commencement of the algorithm.

The correspondence between the decision tree T and the derived MLP neural net N is that there are ¢
units in the first hidden layer, ¢ + 1 units in the second hidden layer and at most K output units, where
the K is an upper bound on the number of classes. In our test task, K is eleven.

This fast training algorithm is faster by a factor of order +2/log¢ compared to the back-propagation
algorithm. The main reason is that maximising the function above is a problem with n degrees of
freedom, whereas back-propagation aims to optimise at least nt parameters simultaneously (where ¢
is the humber of hidden units in the first hidden layer of the neural net and » is the number of output
units).

RESULTS USING THE FAST TRAINING ALGORITHM

The fast training algorithm was used with speaker-dependent and speaker-independent tasks in the
same way as introduced for the back-propagation based MLP. Four different random seeds were tested
with the speaker-dependent task and no differences were found — the recognition rate was always 100%.
Inthe speaker-independent task, twelve different random seeds were tested to get average recognition
rates. In addition, the results also indicated 21 hidden units were required in speaker-dependent tests
and different numbers of hidden units were required in speaker-independent tests (see table).

Speaker-dependent : 4U-1U

Training Test Hidden U. Ave.Recog.Rate Range

spki spkt 21 100% 100%-100%
spk2  spk2 21 100% 100%-100%
spk3 SpK3 21 100% 100%-100%
spk4 spk4 21 100% 100%-100%
spkS  spk5 21 100% 100%-100%
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Speaker-independent : 4F-1F

Training Testing Hidden U. Ave.Recog.Rate Range
spk2345  spki 33 73.49% 67.27%-78.18%
spk1345  spk2 27 83.36% 78.18%-87.27%
spki245  spk3 27 83.33% 78.18%-85.45%
spk1235  spk4 27 76.06% 72.73%-78.18%
spk1234  spk5 27 82.43% 80%-85.45%
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DISCUSSION

This paper has identified three domains in which the use of neural nets for isolated digit recognition can
be explored and optimised. The first, the selection of input features has been fixed in this study, hence
cannot contribute to the discussion of our current results. The second, is the training and the third is
the architecture of a neural network. A basic MLP architecture is used but varied in terms of its training
procedure and number of hidden units. The back-propagation training algorithm with a fixed number
of hidden units (30) is compared to the fast training algorithm with a data-dependent number of hidden
units. The fast training algorithm provides better results both in a speaker-dependent mode (Fig.2) and
a speaker-independent mode (Fig.3). Important advantages of the fast training approach are that it
avoids problems with lack of convergence experienced using a back-propagation algorithm and results
in a dramatic decrease in training time. On the other hand, the fast training algorithm based MLP
architecture tries to reduce the system struciure by minimising the number of hidden units solely on
the basis of the training data. This could have the effect of encoding highly detailed information about
that training data into the neural network weights. We are investigating the degree to which this stored
information allows generalisation 1o test data outside the training set in a separate set of experiments.
Some modifications to the fast training algorithm (e.g., setting a minimum number of hidden units) may
be necessary if we find that this algorithm gives inadequate generalisation.

Peeling and Moore (1988) indicate the choice of start-up weights was not found to be very important
in their similar study ssing a back-propagation bas=d MLP architecture. Moreover, an MLP with one
hidden layer gave a b ‘ter performance than that ar. MLP using two hidden layers. In our experience,
start-up weights used ir. In MLP with one hidden laye: could directly affect the speed of convergence
of training and lead to qu. * different results when appli: ! in recognition mode.

Our experiments indicate the the fast training algorithm wi ~h gives higher average recognition scores
and generally reduced ranges ' scores depending on initiati. - of training procedures is a suitable basis
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for further work on the digit recognition task. The next stage in our work is to define an appropriate
set of input features for the digits. The digits consist of at most two vowels with an initial, middte
and/or final consonant. The vowels are easily located by finding peaks in voiced energy and frames
selected in the vicinity of these peaks wilt convey useful information about the vowel class. Of the
eleven digits, six can have distinct diphthongs in Australian English. In general, the energy peak of
the diphthongs in this context occurs on the first of the two vowel qualities, with the energy decraasing
through the transition and into the second vowel quality. Thus, to identify the diphthong we need fo
select at least two frames within the strongly voiced section — say, one frame near the peak energy (to
capture information about the first vowel quality) and one at a later point where the energy has been
reduced to half. In the case of both monophthongs and diphthongs, the later frame may also capture
some information about the movement of the articulators towards any following consonant (as noted
earlier).

The consonants present more of a problem because they can come from one of several broad classes
(liquid, nasal, fricative or plosive). In addition to those frames which are positioned to capture infor-
mation about vowel classes, we aiso want fo select frames which help identify initial, middle and final
consonants. Because of the generally much lower energy associated with consonants, particularly
if they are unvoiced, we intend to use difierent parameters measured from the speech waveform to
help position these frames. There is no simple solution to this problem because of the very different
characteristics of the different classes of consonants and the importance and subtlety of the acoustic
dynamics (such as in the plosives). Note, however, that this scheme for identifying significant frames
allows a very flexible definition of frame locations.

Millar and Hawkins (1990) show that the selection of speakers used fo train the system is a significant
factor in determining speaker performance. Given a large number of speakers the principles of speaker
selection outlined by Millar and Hawkins could also be used to optimise digit recegnition.
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