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ABSTRACT - Two experiments using a multi-layer perceptron to explore phonetically signif-
icant boundaries in the speech signal are described. The two fundamental distinctions, be-
tween speech segments which have periodic or aperiodic waveforms, and between speech
segments which have transitional or steady state spectra, are examined to lay the foundation
for possible future work. In the first experiment the refinement of hand segmented vocalic
nuclei is shown to be possible for at least one speaker, whereas in the second experiment
new boundaries are created using criteria developed from within the data itself.

INTRODUCTION

Speech is a continuous signal generated by moving the articulators through a coordinated series of
gestures guided by the target articulation of a sequence of phonemes (Potter et al, 1947; Fant 1960;
Flanagan 1972). Such movement blurs the boundaries between the realizations of adjacent phonemes
which, in their complexity, admitt a large amount of variability. In order to relate acoustic processing to
phonetic structure, it is necessary to derive a time alignment of phonetic descriptions of the speech to
the acoustic signal.

Many different techniques are used to perform this task in the field of automatic speech recognition.
Some of these techniques require segmentation of the speech into sub-word units such as allophones,
phonemes, diphones, or syllables. These units may be identified either on a linguistically motivated
basis such that they correspond roughly to perceived phonetic segments, or strictly on the basis of
acoustic homogeneity (Zue 1980). Traditionally, this segmentation has been done manually by a
experienced person, by visual inspection examining the waveform of the acoustic signal with the aid
of graphic displays of the energy contour or spectrogram. However, this process is extremely tedious
and time consuming. The decisions are subject to human errors such as mechanical errors committed
by hands or mis-interpretation of a spectral or waveform display. An automatic method is therefore
preferable.

There are two main approaches for the automatic segmentation of the acoustic signal. One of them
transfers segmentation data from an utterance of identical content, which has already been segmented,
onto the utterance requiring segmentation. This method uses a reference waveform which may be hand
segmented and labelled natural speech of a reference speaker (Wagner 1981), or may be synthetically
generated utterances from a known phonetic string, in which case, no manual segmenting and labelling
is needed (Bridle and Chamberlain 1983). Unless a sufficiently high-performance text-to-speech system
can generate the reference utterance the task of hand- segmentation and labeliing is still required for
the generation of reference material. The other approach does not have to compare with a reference
waveform. One example, given by Wilpon (1987), is based on the variation of the spectral contour.
The speech is segmented automatically into sub-word units which are defined acoustically, but not
necessarily phonetically. The lack of the phonetic interpretation of the segments makes it hard to
incorporate such segmented data with recognition procedures if only the phonemic transcription of the
word is known.

There is scope therefore for the development of methods to automatically segment speech signals in
a manner that is sensitive to their phonetic structure. From an acoustic-phonetic point of view, the
speech signal consists of two major types of acoustic signal, periodic and aperiodic. The periodic
signal repeats itself every T seconds, where T is called the period of the waveform (Lynn 1980). For
all the periodic sounds that occur in the course of speech, the sound source is the larynx. Pericdicity
is present in all vowel sounds and voiced consonants. The aperiodic signal has an irregular form and
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is generated by a turbulent air-stream which is heard as noise. Aperiodicity is present briefly in plosive
consonant sounds and on a more continuous basis in the fricatives and affricates (Fry 1980). The
periodic - aperiodic distinction is fundamental to the acoustic phonetic structure, thus it is seen as the
appropriate starting point for a phonetically motivated segmentation system.

Another fundamental distinction in acoustic phonetics is that between transitional and steady-state
sounds. As the acoustic realization of a phoneme depends on the immediate phonemic environment -
the so-called coarticulation phenomenon - there is often a rather rapid change in the spectral structure
of the speech signal in the vicinity of phoneme boundaries. At other times the spectral structure is
relatively constant. This effect can be easily observed in a spectrogram (Potter et al, 1947).

In this paper, a method is presented which allows a rough segmentation to be developed manually
which separates the signal into its periodic and aperiodic parts, and then automatically refines this
segmentation. This is followed by a method which separates the transitional parts and the steady parts
within a periodic signal segment.

SPEECH DATA CORPUS AND ANALYSIS

The experiments were conducted on five repetitions of CVd syllables from one native Australian English
speaker, where C represents the voiced and voiceless stop consonants: [p t k b d g ]; V represents
the eleven Australian nominally monophthongal vowels : [i1€ 22 & A D 2 ® u 3.]. The acoustic
signal was sampled at 10kilosamples/second, and split into a sequence of 12.8ms time frames which
had 6.4ms overlaps. The frames were then Hamming-windowed.

The speech analysis consisted of the calculation of 10 Mel-scale Frequency Cepstral Coefficients
(MFCC) at 6.4ms intervals. The MFCC were derived using the algorithm presented by Davis and
Mermelstein (1980). It should be noted that the MFCC is not ideally suited to represent periodicity
in general, as its sensitivity to harmonic structure is limited. However in the present restricted data
corpus periodicity has been interpreted as that signal within the limits of the vocalic nucleus. This is
strictly true for the unvoiced consonant onsets, but has the effect of classifying the pre-voicing of the
voiced stop onset as aperiodic. In a more general data corpus a more appropriate pre-processing of
the signal could be used.

THE MULTI-LAYER PERCEPTRON

The method developed in this study relies upon the characteristics of the multi-layer perceptron (MLP).
In the connectionist approach to pattern classification, reference data are represented as multiplicative
weights linking the nodes of a network in which each node is a simple processing unit (Lippman, 1987;
1988). In the following experiments a fully - connected MLP of three layers - one input layer, one
hidden layer and one output layer was used. The number of nodes per layer used in each experiment
described in the following sections was different. Figure 1 represents a example of a three layer (MLP),
where the input layer has ten nodes, the hidden layer has four nodes and the output layer has two
nodes.

Output Layer

Hidden Layer

Input Layer

Figure 1. A three layer Multi-Layer Perceptron.

The input to the MLP is a group of patterns which consist of feature vectors, in this study, the 10
MFCCs. The output of the MLP consists of N nodes where N is equal to the number of classes into
which the input patterns are to be classified. Each output node corresponds to one class.

It is necessary to distinguish clearly between two modes of operation for the MLP: Training mode and
recognition mede. In training mode, training data is presented to the input nodes of the MLP while
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the desired output is compared with the values on the output nodes. The global error between the
desired and observed output is used to determine changes to the weights. These changes are applied
after each complete presentation of the training data. The changes to the weights are determined by
the conjugate-gradient optimization algorithm (Powell 1977). The training process terminates when the
global error meets the minimum acceptable value (given by the experimenter), or when it could not find

a better way to minimize the global error, which is the case when |’( encounters a local minimum of the
error space.

in recognition mode, one pattern is presented at the input at one time. The output nodes compete to
represent the input pattern. The node with the highest activation score wins the process, and the input
pattern is classified to the class represented by this output node.

A critical characteristic of the MLP for the purpose of this study is that there is a positive correlation
between the number of hidden nodes that are used, and the complexity of the decision boundaries
which the network can encode in its weights (Lippman 1987). For a given problem, the number of
hidden nodes to be used for the MLP is related to the grade of detail which it is desired to encode
to represent the relationship between the input pattern space and the categories of the output space.
With a smaller number of the hidden nodes, the MLP couid encode only more general reiationships,
and with a larger number of hidden nodes the MLP could encode more detailed relationships.

PERIODIC DISTINCTION

The first experiment used a MLP to segment the CVd signals into periodic and aperiodic parts, where,
as noted above, the periodic parts correspond to the vocalic nuclei. This experiment was motivated by
an other experiment, where the same data was used, and in which it was intended to recognise the
six stop conscnants and the eleven Australian monophthongs. The data was segmented by hand, and
each CVd syllable was segmented into the vocalic nucleus and the remaining part of the syliable. The
initial recognition result based on frame by frame recognition was relatively poor. One of the analyses
to investigate the reason for this poor performance was to examine which part of the time course of
the utterance failed 1o be recognised correctly. A large number of such failures were found at the
boundaries of the segmentation between the vocalic nuclei and the remaining part of the syllable. The
initial hand-segmentation of the data was re-examined and it was found that those failures corresponded
to errors in the hand-segmentation. After correcting these errors of hand-segmentation, the recognition
experiment was repeated, and the recognition result improved substantially. In this way, a new method
of refining a rough hand segmentation using a MLP was discovered.

THE METHOD

The method for refining rough segmentation operated as follows. The MLP was trained to criterion using
the roughly segmented and labelled data. The data was hand-labelled by deciding on a segmentation
point between the initial consonantal release and the vocalic nucleus of the syllable and then labelling
each individual frame on either side of the segmentation point respectively as aperiodic or periodic.
The trained MLP was then used in recognition mode on its own fraining data on a frame by frame
basis. Frames whose previous labelling was not in agreement with the MLP output for that frame were
noted. Where these frames occurred adjacent to a segmentation point, that is, where the previous
labels changed from aperiodic to periodic or from periodic to aperiodic, the output of the MLP was
deemed to be correct and the segmentation point was shifted to minimise the error in that region.

The MLP was then re-trained using the new segmentation point. The process was repeated until errors
in recognition of the frames labelled periodic or aperiodic frames was reduced to zero or to an agreed
level.

THE ARCHITECTURE

The architecture of the MLLP used was a 10 node input layer, a 4 node hidden layer and a 2 node
output layer. The inputs were the 10 Mel-scale Frequency Cepstral Coefficients, and the two output
nodes corresponded o the two ouiput classes: periodic and aperiodic.

THE RESULT AND EVALUATION

Using this method, on a rough segmentation of the five data sets, each containing one repetition of the
66 CVd utterances, the maximum number of frames of error corrected was 9 frames, corresponding to
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approximately 58ms. This occurred on the item / bi / in which the segmentation point had originally
been erroneously placed at the onset of pre-voicing. The new position was immediately before the
nucleus onset.

In order to evaluate this method, the segmentation points of all utterances were intentionally shifted,
randomly to the left or right, from the previously refined positions by a random number of frames.

The intentionally perturbed data was then used in place of the rough hand-segmentation to test the
robustness of the method. The results of this analysis is shown in Figure 2.
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Figure 2.  Result of analysis for intentionally perturbed data.

VOWEL NUCLEUS ANALYSIS

From the previous experiment, the rough segmentation was finally refined so as to determine accurate
endpoints for the vocalic nucleus. From phonetic knowiedge, we know that the stop consonants of
English [ p t k b d g ] share the same manner of articulation, in that they are produced with
the rapid release of a complete closure in the vocal tract (Lieberman and Biumstein 1988). There
are several acoustic cues that contribute to the perception of a stop consonant, one of them is the
formant transition into or out of the adjacent vowel {Lieberman and Blumstein, 1988; Fry, 1980). So the
transition part of the vocalic nucleus for a vowel in different contexts (with different stop consonants)
is different, even for the same vowel. Our aim was to separate the transition part of the nucieus from
the steady part, in order to prepare the vocalic nucleus for further analysis.

The separation of steady-state portions of the vowel nucleus from its transitional portions is based
on the fact that although the whole vocalic nucleus is iniially labelled with a single vowel label, its
transitional parts are, on a frame by frame basis, more similar to other vowels. It is assumed that the
initial training of the MLP over a wide range of consonant contexts encodes a robust model of the vowel
target despite the contradictory information contributed by frames in the consonantal margins of the
nucleus. The specificity of the encoded vowel models will depend on a number of factors such as the
rate of articulation of the syilable, the complexity of the MLP, and the composition of the training data.
in this study there were eleven vowels in six different contexts for each repetition. The steady part of
each of the eleven vowels was repeated six times, while the transition part of the vowel for each of
the sixty-six syliables differ from each other. The accuracy with which the boundaries between steady
states and transitions can be located will also depend on the local density of vowels in the vowel space
as the definition of a transitional frame is related to its proximity to a neighbouring vowel. However
this method allows the automatic segmentation of a vocalic nucleus so that transitional segments can
be re- tabelled with the joint labels of their adjoining segments and modelled at a further stage in an
appropriate manner.

ARCHITECTURE

The choice of the number of hidden nodes which enable training of the network just to learn to classify
the steady part of the vowels but not the frames in the transitional regions is clearly important owing
to the correlation between number of hidden nodes and boundary complexity noted above. For this
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experiment 6, 10, and 23 hidden nodes were evaluated. However only minor difference in the per-
formance of the network was found when discriminating between transitions and steady state of the
nucleus. The main experiment was based on a MLP with an input layer of 10 nodes, a hidden layer of
10 nodes, and an output layer of 11 nodes.

METHOD

Accurately delimited vocalic nuclei of the utterances were labelled on a frame by frame basis using the
eleven classes of monophthongs as the labels. The MLP was trained using these labelied data, then
tested using the training material. The activation scores of each of the output nodes for each frame
were recorded. It was observed that the frames which had high activation scores in the correct output
node corresponded to the steady part of the vowel. The frames which corresponded to the transition
part of the vowe! had their highest activation scores in output nodes which corresponded to different
vowel labels. In this way, it was possible to separate the transition part from the corresponding steady
part of the vocalic nucleus.
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Figure 3.a. Waveform, energy, spectrogram for the word “Beed ;
3.b.  Activation scores of the MLP for the vowel [i].

The result of this analysis is shown in Figure 3, where 3.a shows the activation scores of the MLP
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in the recognition mode, and 3.b shows the the waveform, energy contour and the spectrogram. The
beginning of the vocalic nucleus indicated as frame 1 in 3.a, corresponds to the 25th frame in 3.b.

DISCUSSION

Anaral neamoon i ol iy T

These procedures are specific examples of a general process in which a limited number of category
judgements are made about each frame comprising the data. The boundaries between these cate-
gories, as measured in the input-space, are encoded in an MLP of limited complexity. This encoding
will capture the dominant features in the training data that correlate with the category differences. The
positions of the category boundaries in the time domain are then successively refined using the errors

generated between categories and the assumption of ‘temporal continuity of category’.
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Note that a more complex MLP may be able of encode the errors on which it is trained as legitimate
alternatives of the truth. Such an MLP would not be useful in this method. The question of the limits
on the complexity of the MLP to make it useful for this task has not yet been fully explored.

There are a number of parameters which would appear to be critical in this approach: first, the definition
of the input space appropriate for the drawing of boundaries between the desired categories; second,
the architecture of the MLP selected, and third, the degree of training given fo the MLP. All of these need
investigating before the method can be generally applied to the exploration of the phonetic category
space of the acoustic signal of speech.
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