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ABSTRACT

It is generally accepted that the consonant in a consonant-vowel(rC\_/|) pair can be
identified by the nature of the formant transitions in the vowel. STFT power spec-
tral snapshots fail to capture the detailed time-varying nature of these transitions.
In this paper we show that such spectra can be considered weighted time averages
of the pseudo-Wigner distribution (PWD) when appropriate gaussian windows are
used in the computation of both. Given this interpretation we then speculate as
to whether the higher order statistics of the PWD convey additional consonant
discriminant information. Experimental evidence indicates that they do.

INTRODUCTION

The formant transitions in a CV syllable are known to contain useful consonant discriminant
information[Liberman 1956]. From a human perceptual point of view however, authors dis-
agree as to these transitions importance relative to the noise burst at stop release. Stevens
and Blumstein[Stevens & Blumstein 1978] for example, argue that invariant cues for place of
articulation of stop consonants can be characterised independently of the following vowel. in
their view, then, formant transitions are not the primary cue signaling place of articulation.
However for the engineer attempting to build practical speech recognition devices, extract-
ing maximum information about the consonant from the neighbouring formant transitions
promises to provide more robust performance in noisy environments. Typically formant tran-
sitions contain more signal energy than fricative bursts and so are less susceptible to noise
corruption. The problem is to find a suitable choice of feature space which captures the
nonstationary nature of these transitional regions.

Most of todays commercial speech recognition systems rely on a short time Fourier power
spectral representation (S5,(z,w)) of the input signal, typically sampled at around 100 Hz.
S.(t,w) is an easily interpreted, non negative time-frequency decomposition, defined by the
equation

Sa(t,w) = i\/;:” Rt — )e(r)e I dr 2. (1)

The recognition of steady state vowels is considered very feasible using this quasi-stationary
estimator. Most researchers would agree that in this instance the STFT feature space con-
tains the important information, exhibited in an important way. However, such a transforma-
tion is less adequate for characterising rapidly changing events such as the transition into or
out of a stop consonant. This is because the ability of this transformation to localise energy
in the time-frequency plane is strictly limited by the resolution of the window A(z). An in-
crease in time resolution results in a decrease in frequency resolution and vica-versa|[Priestley
1981]. Furthermore, imposing the condition of stationarity upon data which is inherently
non-stationary can result in an inconsistent or misleading spectral representation|Silverman
& Lee 1987].

THE WIGNER DISTRIBUTION

A detailed examination of formant transition characteristics requires a spectral representation
with a greater time-frequency resolution than that provided by S.(t,w). In recent years
an alternative time-frequency representation known as the Wigner distribution (WD) has
received growing interest{Lowe, Tomlinson & Moore 1986]. The WD of a signal =z(1) is
defined as
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Walt,w) = f et D)’ (t - Z)eiorar @

where « denotes complex conjugate. In practice the evaluation of the WD at 2 = ¢ is
achieved by sampling and then multiplying the signal =(2) by a real symmetric window h(z)
centered at ;. As the WD is simply the Fourier transform of the product of the signal and
its time inverted conjugate the usual window carpentry can be used in choosing h(t). This
modified WD is known as the discrete pseudo-Wigner distribution(PWD) and is defined by
the equation

N-1
W,(t,w,.) =2 Z |hy (k) 2(t + k)™ (t — k)e~F2h=(n/N) wy = w(n/N). (3)
k=~N+1
In this paper discrete time versions of the various spectral estimators are indicated by a
subscript on the frequency parameter. For computational purposes (3) is often rearranged
in the form

rN-
Wty wa) = 4Re{ Zi |k (k) P2t + k)a*(t — k)e-i2*“<"/"'>}-z|a;(f)|2 @
k=0

Choosing N to be a power of 2 allows efficient calculation of the PWD over 2N — 1 points
to be achieved using an ordinary radix-2 fft over & points. An unfortunate consequence
of the PWD as defined in (3) is the occurrence of aliasing even when the sampling of
«(t) satisfies the Nyquist criterion. Several authars have discussed ways of overcoming this
probiem[Claasen & Mecklenbraiiker 1983]. The solution chosen in this paper is to transform
the signal into its analytic equivalent prior to computing the PWD. This has the added
advantage of preventing interference between positive and negative frequency components
in the resulting distribution. )

SOME ADVANTAGES AND DISADVANTAGES OF THE PWD

The properties of the WD and PWD have been exhaustively documented eisewhere[Claasen
& Mecklenbraiiker 1980}. Here we simply point out several important properties which are
relevant to the current discussion.

The main advantage of the PWD is the absence of smoothing in the time domain. Window-
ing the WD in time produces smearing in the frequency direction only, hence, the frequency
resolution of the PWD can be increased by using a longer window without loss of time
resolution. Stated more formally

Tultyn) = 5= .[ * Wa(t, Wa(0, 0 — ) (5)

where W (t,w,) is the discrete WD of the window h(z). The disadvantages of the PWD (and
WD) are its lack of positivity and its bilineal nature. The first prevents any local interpreta-
tion of an energy density in the time-frequency plane. The second gives rise to interference
or cross terms{Hlawatsch 1984] which may cause difficulties in interpretation, especially in
the case of complex multicomponent signals such as speech. A further disadvantage of the
PWD is the very high data rates that it generates. Because of the absence of smoothing
in the time domain, the PWD must be sampled at a similar frequency to the signal itself.
Failure to do so can result in visual aliasing when viewing an undersampled distribution.

In most practical situations[Allard 1988], it is necessary to apply some sort of smoothing
to the WD in the time domain as well the frequency domain in order to suppress negative
regions and cross terms. This can be achieved by simply low pass filtering the PWD in time.
The smoothed pseudo-Wigner distribution[Allard 1988] (SPWD) is related to the PWD by
the equation

Wty wn) = g(t) » Wa(t, 0n) ©)

101



where g(t) is a real symmetric window. This smoothing can be incorporated directly into
the calculation of the PWD by rewriting (4) as

- SN-1 E-1 N L1
Walt,wn) = 4Re{ 3" v (B Y ol + b+ a2k + Des2 Mo S oniai 4 )P,
L k=0 I=—L+1 =L+l

U]
In the next section we show that W,(t, w,) computed using an appropriate choice of g(t) and
k(1) is equivalent to the short time Fourier power spectrum.

THE RELATIONSHIP BETWEEN THE PWD AND THE FOURIER SPECTROGRAM

The spectrogram is related to the WD through a 2-d convolution[Claasen & Mecklenbraiiker
1980}

) 1 +o00 f+oo ) o o i
So{t,w) = 5—-7-‘_-./;° j‘w We(r, }Wa(r — {0 ~ g)drdn (8)
where W, (t,w) is the WD of the window h(t) defined as
: +oo T . g
Wat,w) = / h(t+ DR (- D)e37dr. ©)
If we select h(t) to be a Gaussian window of the form
= (2n)tobeap(Zh
h(t) = (27) " To~ Fexp( 40',2) (10)
then we obtain from (9) the double Gaussian kernel
1 1,8 WP
Waltsw) = = —eap(~3lo5 + 7] (1)

where 6,0, = §.

Thus the spectrogram S.(t,w) computed using the Gaussian window h(t) defined in (1021 is
identical to the WD smoothed with the double Gaussian kernel defined in (11). Given that
Wh(t,w) is in this instance a separable function we can rewrite (8) in the form

Sa(t, w) = [W(t,w) * K(w)] * k(t) (12)
where
K(w)= %e:p(— %w’/a?p) (13)
and
k() = :—tea:p(—%tz/af) (149)

The bracketed term in (12) is simply a pseudo-Wigner distribution of z(t). Thus S.(t,w)
computed using the Gaussian window h(t) is proportional to a weighted time average of the
PWD about t = t, where the weighting function is also Gaussian

Sa(t,w) = W(t,w)  k{1). (15)
In this the rest of this paper when we refer to the refationship between the short time Fourier
power spectrum and the PWD we implicitly assume that both have been computed so as
to satisfy the above conditions.
If we characterise a frame of speech by a single STFT power spectral vector instead of its
PWD then we effectively loose information about the higher order statistics of the PWD.
The significance of this information loss for the accurate characterisation of non stationary
signals such as formant transitions is discussed in the next section.

102



CHARACTERISING FORMANT TRANSITIONS USING THE PWD AND STFT

Each CV transition region can be represented by a distribution of PW vectors in a fre-
quency space where each vector represents the PWD at time i, the distribution having
being computed at the signal sample rate. Such a representation involves no information
loss as the origin signal can be trivially recovered from the distribution. Obviously however
the distribution does contain a high degree of redundancy. The problem of distinguishing
between different CV transitions can effectively be translated into one of distinguishing be-
tween different PW distributions. How then do we best characterise such distributions for
classification purposes?

Representing each transition region by one or more STFT power spectral vectors is one
popular alternative. As pointed out in the last section, characterising a distribution of PW
vectors by a single STFT power spectrai vector computed over the same time interval is
equivalent to representing the PWD by its time weighted mean. Classification of the PW
distributions based on such information would clearly be optimal if the distributions all had
the same shape and spread, differing only in their average positions in the frequency space.

Unfortunately, this turns out not to be the case. Transitions from different consonants into
the same vowel have PW distributions with very different shapes and spreads. Discrimination
based on a single STFT power spectral vector will ignore such differences which are related to
the higher order statistics of the PWD. In practice however, the transition region is usually of
sufficient duration to be represented by a sequence of several STFT power spectral vectors.
This is equivalent to representing the entire PWD by several localised averages. This will
convey some additional information about the shape and spread of the PWD but introduces
time alignment problems as multiple vectors now represent a single speech event.

Here we pursue a different approach to characterising the PWD. Instead of simply looking
at the first order statistics of the PWD as is the case with the gaussian STFT spectral
estimator one obvious way to make use of the additional information available in the PWD
is to examine its higher order statistics. In the experiment described in the rest of this paper
we do just that and look at the discriminant information contained within the covariance of
the PWD.

CALCULATING THE COVARIANCE OF THE PWD

In order to compute the covariance matrix from the PWD we define a vector X, representing
the PWD at time ¢ by the equation

Xy = (me1, Bezs oony m,N)T where 24y = Wz(t, wy) k=1, N . (16)

An N by N sample covariance matrix T is constructed whose elements %;; are defined by
the equation

1 T
=5 > (e — T (e — 75)] (17)
t=0
where
1 T
£ = — k2 (18)
T TY ; i

To quantise the difference between different © matrices, the covariance matrix is treated as
a space vector with N(N + 1)/2 dimensions. A Euclidian Distance measure is then used to
compute the distance between these covariance vectors.

EXPERIMENT

Purpose
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This experiment was designed to discover whether the PW covariance matrix T defined by

(17) can be used to distinguish between the different consonants in a set of CV syllables

where the vowel portion of each syllable is the same. Only the transition regions in each
)

arnrrafaria wimra emada ilable to the spectral estimators P b tarno Ble o

waveform were made available to the spectral est
using simple nearest neighbour (nn) classifiers. A comparative study of nn «
performance using both the PW covariance and the more traditional Fourier an
time power speciral estimators was conducted.

Data

The data for this experiment was produced by a single male speaker with a Southern British
accent speaking each of the eight syllables ba, da, ga, pa, ta, ka, ma, na ten times. This
data set was chosen to provide a set of consonants varying in both place and manner of
?riicuiat)ion, including voiced stops {ba, da, ga}, unvoiced stops {pa, ta, ka) and the nasais
ma, na).

The recorded speech was sampled at 10kHz and digitised with 12bit resolution. The region
of formant transition in each syllable was then manually extracted using the Cambridge
interactive speech editor (CAMSED), coupled to a spectrogam display system. This provided
80 speech files each containing a single CV transition, typically around 60ms in length. A
spectrographic analysis using pseudo-Wigner and short time Fourier spectral estimators
was then performed on each file. The short time Fourier power spectrum was computed
at intervals of 5ms using a 12.8ms gaussian window. The pseudo Wigner spectrum was
computed at each sample point using a 12.8ms gaussian window and a singie PW covariance
matrix generated for each file. In addition we also performed a 12th order Ipc autocorrelation
analysis on each speech file. This used a 12.8ms hamming window with a 7.8ms overlap.
Thus each file provided a sequence of STFT power spectral vectors, a sequence of Ipc
coefficient vectors and a single PW covariance vector.

Classification

A k nearest-neighbour classification scheme (k=1) was chosen with dynamic time warping for
time alignment of the STFT and Ipc coefficient vector sequences. Three separate classifiers
were built, one for each data type. Euclidian distance measures were used in the STFT and
PW covariance recognisers and an ltakura distance in the Ipc recogniser. The need for data
to train the classifiers and additional data to test them presented a familiar dilemma. If
most of the data is reserved for training then we can have little confidence in the statistical
stability of the test. On the other hand if most of the data is reserved for testing then the
classifier is poorly trained. There is no definitive solution although there are more options
available to us than just partitioning the data once, typically using a 50-50 split.

In this experiment we chose to use a leaving one out test/training strategy. With n data
items the data set is partitioned » times. Each partition contains one data item in the
test set and the remaining » — 1 data items in the training set. The experiment is then
repeated once on each partition, each partition containing a different data item in the test
set. Although time consuming this approach has the advantage of including each data item
in both the test and training sets.

Results

The recognition results for the three classifiers are presented in table 1. As would be expected
the performance of the nn classifier based on the Ipc data is significantly better than that
based on the STFT power spectrum. Most interesting however is the performance of the
PW covariance classifier which outperformed both the STFT and Ipc based classifiers. This
was despite the fact that this classifier used only one feature vector per transition, albeit
a large one, while the other two techniques required multiple vectors to characterise each
transition.

Table 1 Recognition performance of the 3 nn classifiers
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Recogniser Recognition Performance

PW covariance 91%

iLPC 87.5%

STFT 82.5%
SUMMARY

Representing the speech signal by its power spectrum does not necessarily involve a joss of
information about the signal even though the phase spectrum has been thrown away. If the
power spectrum has been sampled at a sufficient rate in both time and frequency then signal
recovery to within a constant phase factor is trivial[Altes 1980]. In current speech recognition
systems however the power spectrum is typically undersampled in time by a factor of 100
or more. Consequently in the general case the orginal signal is no longer recoverable and
information has been lost. The question we have attempted to provide an answer to in this
paper is, is this information loss significant from the point of view of speech recognition? To
answer this we have to be able to identify exactly what information has been thrown away
by undersampling the power spectrum. This has been done by reformulating the problem
in the pseudo-Wigner domain. Here we can show that an undersampled power spectrum
is equivalent to representing the PWD in terms of its weighted first order statistics. The
information thrown away then is contained in the higher order statistics of the PWD. The
fact that we have demonstrated improved consonant recognition based on the covariance
of the PWD suggests that a more accurate representation of the original speech signal may
weli produce better recognition results. In other words current speech recognition systems
based on a short time spectral representation may well be discarding useful discriminant
information contained in the input speech.
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