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ABSTRACT - The modelling of log area coefficients by cubic splines with
variable knots is discussed. Results are presented which compare variable
and uniform knot modelling for a connected digit utterance spoken over a
telephone handset using least squares error and spectral difference
measures.

INTRODUCTION

Speech waveforms exhibit various degrees of non-stationarity and as a result a
uniformly sampled, bandlimited approximation of model parameters is highly
inefficient (Atal, 1983). Observations of model parameters such as reflection
coefficients or log area ratios will show regions where parameters vary rapidly and
other regions where parameters vary more slowly. The use of uniformly sampled
parameters requires the sampling rate to be sufficiently high in order to cater for
regions of more rapid change. One means of overcoming this problem is to use
basis functions which adapt to the degree of local stationarity.

Polynomial splines belong to the class of piecewise polynomials with specific
continuity constraints and have shown to be a useful basis for non-parametric
(Flaherty, 1982) and parametric (Flaherty, 1988) representations. The rationale for
selecting polynomial splines is outlined in (Flaherty, 1988). This paper presents
results on the application of least squares cubic splines with variable knots 1o the
problem of efficient speech model parameter representation. The resulting knot
placement is equivalent to finding a set of basis functions which are adapted to
maich the degree of local stationarity. Conversely, the piecewise polynomial
segments are of shorter duration in regions where parameters vary rapidly and of
longer duration where the parameters vary slowly.

TIME-VARYING MODEL

A time-varying LPC model can be written as

p
y(n) =} an)y(n-k) = g(n).e(n) (1)
k=1
where ak(n) are the time—varying Ipc coefficients,

9(n) is the time varying gain,
g(n) is the excitation.
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electret and carbon microphones (conventional telephone handsets). The data was
digitized with a 16 bit A/D converter at a sample rate of 8 kHz.

The log area ratio coefficients were obtained using autocorrelation LPC analysis
with a 256 point sliding Hamming window. A slide interval of 32 samples (4 ms) was
employed to obtain reflection coefficients which were used to obtain the iog area
ratio coefficients. A slide interval of 16 samples was initially used but did not appear
to provide any advantage for the window size chosen. A larger slide interval
reduced the computational load associated with the determination of the variable
knot locations.

Analysis was carried out for uniform and variable knots with 10, 15 and 22 knots per
utterance. A spectral distance measure used in this study is given by (Turner and
Dickson, 1977) as:

p 5172
} dB 3)

A2
SPDIFF = (10/|n10).[2. Y (o-¢)
k=1

A
where ¢, and c are the original and approximated cepstral coefficients.

This speciral distance measure is evaluated at the sample rate of the original Ipc
coefficients and presented as a function of time.

Normalized least squared errors were obtained for each log area ratio coefficient
and defined by:

N 2
y [ oy(n) - S,an) ]
-1
normaized error = " 4

N
T om?
=1

n

DISCUSSION AND CONCLUSION

Figure 1a shows the variable knot approximation of the first and second log area
ratio coefficient while figure 2a shows the same approximation with uniform knots.
The variable knot approximation clearly provides a much better approximation in
regions of rapid parameter change. This is particularly noticeable in the vicinity of
sample 2500 corresponding to the onset of the word seven. In fact in the region of
all onsets, the variable knot approximation shows significantly better results. This is
achieved by the clustering of knots in the vicinity of rapid changes in log area ratio
coefficients. The more stationary regions corresponding to voiced speech have a
much wider knot spacing. Figures 1b and 2b show the spectral difference plots
which quantify the improvement in spectral approximation.

Tables 1 and 2 show the normalized least squares approximation error for uniform
and variable knot placement averaged over all the utterances as a function of
number of knots and log area coefficient number. The results indicate that, from the
point of view of least squares error, approximately twice the number of knots are
required for uniform knot approximation to result in the same squared error. The
results also indicate that the benefits of variable knot placement decreases with
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It is common to approximate the time-varying parameters as being constant over
an appropriate analysis window. However, by choosing appropriate basis functions
to represent the parameters one can produce a set of linear equations and solve for
the time-varying parameters. This problem has been solved using B-splines on
uniform knots (Flaherty, 1988). Unfortunately the resulting linear system is large
and the bass functions do not adapt to local signal stationarity. Splines can be used
to adapt to local signal stationarity by allowing variable knot placement. The large
system of linear equations then become a large system of highly non-linear
equations which are not computationally tractable.

An alternative approach is to obtain an approximation of the time—varying
parameters using conventional Ipc analysis with a sliding window updating the
parameters every few milliseconds. The parameters can then be modelied with
variable knot splines resulting in a more computationally tractable problem. This is
the approach adopted in the current work.

VARIABLE KNOT APPROXIMATION

It is not desirable to directly approximate the linear prediction coefficients for
reasons of filter stability. A more suitable set of parameters for approximation are
the log area ratio coefficients (Markel and Gray, 1976). The approximation problem
dealt with here is to minimize the squared errof given by:

N 2
error = ) [ai(n) - S,(xn) ] f<i<p 2)
n=1

where p is the predictor order,and Si(t,n) is a cubic spline with knot placement t
approximating the ith log area ratio coefficients ai(n).

The cubic spline can be considered as a piecewise (cubic) polynomial with
continuity of the approximant and its first and second derivative across the
breakpoints, 1. In general a cubic polynomial is represented by four coeflicients,
however, the continuity constraints of the cubic spline result in K+2 coefficients
defining a cubic spline over K knots for a given knot structure. The resulting cubic
spline can be represented by K+2 B-spline basis functions which have compact
support.

Given a fixed knot structure the problem is easily solved by forming the (iinear)
normal equations and solving a banded, positive definite system. Although there are
potential gains to be obtained by allowing variable knots such as efficiency of
representation, the problem becomes nonlinear. The algorithm adopted in the
current work finds local minima and not global minima. The starting point is to
assume a uniform knot spacing then optimize the position of each knot in turn using
an established algorithm (de Boor and Rice, 1968). The solution is a brute force
approach and requires the solution of a linear least squares problem at each stage
of the iteration. After all the knot positions are individually optimized, the process is
repeated until a termination criterion is met.

EXPERIMENTAL PROCEDURE
For the purposes of preliminary investigation, test data was obtained form three

male and three female speakers speaking the connected digit utterance "6758". The
data was recorded through a local PABX with telephone bandwith and a mixture of
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increasing log area coefficient number. These conclusions are supported by the
spectral difference measure described earlier.
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TABLE 1.

Average least squares error,

Variable knots.
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TABLE 2. Average least squares error, Uniform knots.
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