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ABSTRACT - In this paper a new sample association approach to be
known as the Hilbert Warping (HW) algorithm is described. This
algorithm is chosen from the observation that signals of similar
form but with different time scales appear as similar trajectories
when represented by suitable two dimensional plots in the X-Y
plane, and overcomes difficulties such as identification of signal
endpoints and assumptions about the smooth nature of warping that
are permissible, associated with dynamic programming algorithms.
The BW algorithm can be applied to both single dimensional and
multi-dimensional signals as in dynamic programming algorithms.

INTRODUCTION

It is well knownl™3 that speaker verification experiments require warping
of speech parameter contours for time registration purposes. The warping
is expected to compensate for normal expected variations in speaking
behaviour, which may displace corresponding events from repetition to
repetition of a given utterance. In associating speech signal samples,
dynamic programming approachesl'5 have been found to be effective. These
assign correspondences in such a way that the distance between iwo signals
(vectors) is minimized subject to certain constraints on the permitted
amount of warping or shift. The two signals, the 'test signal' and the
treference signal', are both warped in a comparison. Although
computational efficiency of the dynamic programming algorithmsl'5 may be
improved, for example by the use of preconditioning through the
jdentification of signal endpoints or fixed points, it is inherently
computationally expensive. The dynamic programming algorithms implicitly
use 'a priori' information about the smooth nature of warping that are
permissible by imposing constraints on the associations that can be made;
i.e., how abruptly the time-scale of one signal can be changed relative to
the other signal.

In the HW algorithm the signals of similar form but with different time
scales have coinciding trajectories in the X-Y plane. For example a
sinewave x(t) = A cos wt is frequently represented by the X-projection of
c{t) = Aed®t = x(t) + jy(t) where j is v-1 and y(t) = A sin wt. The
trajectory of c(t) is the same circle for any value of w. More
complicated signals x(t) are similarly represented by their complex
envelopes or analytic signals®.7 in which y(t) = %(t), the Hilbert
transform of x(t).

The performance of the new HW algorithm is found to be superior for
warping speech parameter contours due to its computational efficiency and
accurate representation of the warping neighbourhood, when compared with
the conventional dynamic time warping (DTW) algorithm, where computational
efficiency can only be improved by ‘a priori' information on the warping
neighbourhood, and by the use of preconditioning through the
identification of signal endpoints or fixed points.
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THE HILBERT WARPING (HW) PRINCIPLE

Curve theory principlesd can be applied to derive the HW principle. We
consider both linear and non-linear warping problems.

contour in the s - s

s + j§ = §(t) Interval: a < tgb (1)

where the components of s(t) are s(t) and s(t). Then other functions are
obtainable from eqn. (1) by imposing a transformation t = h'(r) where 7 is
a warped version of t, which does not alter the shape of the analytic
contour given in eqn. (1). A point set H on the analytic contour is
defined to be 'Hilbert Warpable' if the point set represented by the new
vector function s(h'(7)) remains the same under the transformation given
by eqn. (1). Transformations that satisfy this specification exactly have
been proven to be strictly linear for 'Hilbert Warpable' signals. However
the transformation function can be chosen more arbitrarily if we make
point to point correspondences between the chosen curve and the
transformed curve.

THE HILBERT WARPING (HW) ALGORITHM
Sample association

In associating samples of s and sg, two general approaches are possible.
The first is to make direct association between samples of sy and sg by
localized searches in the complex plane for nearest neighbours. This
approach is basically sound, but it invelves the processing of every
reference signal with every test signal, and the distances associated with
warped patterns will vary if the reference and test signal are
interchanged such that the test signal is considered to be the reference
signal.

An alternative efficient approach is to use a third set of phase values
defined as the 'neutral phase sampler'. With this we pre-determine a
fixed set of permissible phases:

ep(i) = iae, i=0,1, ... N (2)

with a® set at some fixed increment. At this stage we just assume that
the increment A® is sufficient to provide permissible phase values in the
range of reference and test phase values. Table 1 illustrates the phase
warping approach.

We compare each value of #p(1) with the phases @g(kgr) of sg (kg) observed
at samples kg. @r(kg), sp(kr) are respectively total phase and signal
amplitude values of the reference signal. That value of kg which gives
the closest value of &g is then associated with the phase index i, which
becomes the sample index for the warped signal.

This allecation of phases to sy is done once only for each reference, thus
producing a set of 'neutral phase' references. To make the notation
explicit, we denote the mth reference by spm(kr) in its original form, and
by sRm(i) in its warped form. All values of i will have some associated
spp(i) for the uniform phase sequence ®p(i) to be maintained. Not all
values of sgpy(kg) appear in spy(i) because some are discarded in the
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closest phase selection process. This phenomenon is illustrated by the
non-appearance of values in ®p(i) and i columns of Table 1 alongside some
values of Kkg.

Each reference is processed only once, and the set

v ar

1 . .
spm{i), m=13i, ... M

w

is stored, M being the total number of references. A similar process is
used to associate values of test signal phase @p(kp) with ®p(i) and i. We
obtain for each test signal sy(kyp) a warped set of data sp(i).

The comparison of test and reference signals is accomplished by comparing
s'p(1) with sgp(i) for m = 1, ... M directly by correlation or,
equivalently by computation of the Euclidean norm of their differences.
The latter has the advantage of evaluating the comparison as the warping
progresses.

AMBIGUITIES ASSOCIATED WITH HW

Figure 1(a) shows a signal sy(kp) (test signal amplitude s at sample
number kp) in which the complex plane plot (plot of sq(ky) vs. §T(kT)) has
a loop. It is not immediately apparent how the several values of sg{(ky)
that occur near & = 500 should be allocated to the warped signal sf(i).
The sign (polarity) of the signal phase difference (a®(ky) = &(kp) - &(ky
- 1)) changes from positive to negative and negative to positive on the
loop. This disturbs the monotonicity of the signal phase curve, as shown
in Figure 1(b), and leads to ambiguities in selection of st{ky) for the
particular phases &p(i) in the neighbourhood of 50°.

The non-monotonic phase curves of the signals have two properties which
should be understood so that they may be HW'd successfully by the HW
algorithm. The information on the characteristic of the analytic contour
(i.e., analytic contour with a loop) is shown by the peaks and valleys of
the non-monotonic analytic phase curve (1) and (2) of Figure 1(c). The
curves (1) and (2) are smoothed until monotonicity is achieved. These
curves are illustrated by phase curves (3) and {4) of Figure 1(c), and
illustrate the non-linear variation of phase between the signals. This
non-linear variation is due to distortion of the time scale only, and the
purpose of the Hilbert phase warping algorithm is to warp signals which
undergo this non-linear variation and preserve the non-monotonic
characteristics of each phase curve. Hence, we can choose either of the
phase curve {3) or (4) to be the neutral phase sampler, and compare it
with the other.

MULTIDIMENSIONAL HW (MHW)

In MHW we associate phase vectors, rather than phase points as in single
dimensional warping. A phase vector at a particular time instant is
defined by the phase value in each dimension at that time instant. The
phase vectors are compared as for the single dimensional case in a
monotonic fashion, and from the minimum distance phase vectors
corresponding signal samples in each dimension they are associated.

PRACTICAL APPLICATION OF THE HW
The reflection coefficient time contours were obtained for the digitized

speech data "the tighter the traveller wrapped" by sliding a 128 point
Hamming window, and evaluating 14 order reflection coefficients (ky, ko,



. k14) for each analysis segment obtained by a 32 point shift of the
window in the direction of time. The reflection coefficient contours were
chosen in favour of linear predictor coefficients because the stability
condition on kj, {kj| < 1 is simple to preserve under quantization.

Hence, smoothing of the k contours can be performed without affecting the
stability of the all-pole filters; small changes in linear predictor
coefficients can iead to instability of the filter.

As an example to illustrate the HW procedure, we consider the first
reflection contour of repeated utterances by a speaker. Figure 2{a}
illustrates the smoothed first reflection coefficient (kq)} time contour of
the speech data “"the tighter the traveller wrapped" spoken by the same
speaker in two different sessions. The HW'd version of the signals is
shown in Figure 2(b).

As an example to illustrate the superiority of the HW algorithm when
compared to DTW algorithm, we consider the "kq" contour of the speech data
'traveller' uttered twice by a speaker. PFigure 3{a} illustrates the
smoothed "ki1" contours. Figures 3(b), 3(c) and 3(d) illustrate
respectively HW'd contours, DTW'd contours with no slope constraints and
DTW'd contours with slope constraint. By comparing Figure 3(b) with
Figures 3{c} and (d}, the HW algorithm is shown to be superior to the DTW
algorithm, due to its consideration of an accurate warping neighbourhood
of the signal points without any 'a priori' information on the signals.
The DTW algorithm, due to its arbitrary restriction of the warping
neighbourhood, does not provide adequately warped signals.

CONCLUSION

Beginning with a simple illustration of the circular analytic contour for
all sinewaves, we formulated the HW algorithm for classes of signals with
non~linear monotonic phase curves and complex classes of signals with non-
linear non-monotonic phase curves. It was observed that the latter class
of signals consists of analytic contours with a loop. A novel, practical,
HW algorithm, which consists of transformation of non-monotonic signal
phase curve to monotonically smooth phase curve and choice of an
appropriate common phase scale (neutral phase sampler), was developed.

The application of HW algorithm was demonstrated to be promising for time
aligning speech parameter contours such as reflection coefficient
contours, and observed to be comparable to the DTW algorithm. The
disadvantages suffered by DTW algorithms, such as the requirement of 'a
priori' information on warping neighbourhood and 'ad hoc' endpoint
synchronization procedures, have been shown to be overcome by the HW
algorithm. The HW algorithm is more efficient than the conventional DTW
algorithm for warping one dimensional and multidimensional signals.
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