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ABSTRACT ~ This paper describes an experiment designed to explore
the relative merits of different spectral representations for acoustic
segmentation. Conventional spectral representations, such as those
produced by wideband discrete Fourier transform and by linear prediction,
were compared to those based on auditory modeling. Our analysis of 1,000
sentences from 100 speakers indicates that the representations based on
auditory modeling appear to be superior,

INTRODUCTION

The task of phonetic recognition can be stated broadly as the determination of the
mapping between the acoustic signal and a set of phonological units {e.g., distinctive
feature bundles, phonemes, or syllables) used to represent the lexicon. In order to
perform such a mapping, it is often desirable to first transform the continuous speech
signal into a discrete set of acoustic segments. This process of acoustic segmentation
often makes use of information derived from a short-time spectral representation of
the speech signal. Traditionally, the spectral representations are based on discrete
Fourier transform or linear prediction. Recently, various signal representations based
on models of the human auditory system have been proposed, and anecdotal
evidence suggests that such representations may be superior fo conventional ones.
The purpose of the study reported in this paper was to investigate the relative merits
of various spectral representations for acoustic segmentation.

DESCRIPTION OF THE EXPERIMENT
Signal Representation

Five spectral representations were compared. For the wideband representation the
gpectral vector was obtained by applying a 6.7-ms Hamming window to the speech
waveform. For the smoothed narrowband representation, a 25.6-ms Hamming window
was applied to the speech waveform, which was then smoothed with a 2-ms window
in the cepstral domain. For the linear prediction representation the spectral vector
was obtained from a 19th-order LPC analysis on a 25.6-ms segment of Hamming
windowed speech. In all three cases, the magnitude spectrum was obtained from a
128-point discrete Fourier transform.

The remaining two speciral representations were derived from an auditory model
that incorporates known properties of the human peripheral auditory system, such as
critical-band filtering, half-wave rectification, adaptation, saturation, spontaneous
response, and synchrony detection (Seneff, 1984; Seneff, 1986). The model consists of
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three stages. The first performs critical-band filtering with a bank of 39 filters
equally spaced on a Bark frequency scale, spanning a frequency range of 130 to 6,400
Ha. The gecond stage models the transduction process between the hair cells and the
neural synapse. The envelope response of the filter outputs corresponds to the
mean-rate response of neural firing. The third stage models the synchrony response
of the hair cells to their characteristic frequencies. For the ¢ritizal-band
representation in our study, the spectral vector was obtained from outputs of the
crifical-band filters. For the hasr-cell representation, the spectral vector was obtained
from the envelope of the output of the second stage in Seneff’s model.

The spectral representations based on auditory modeling have only 39 channel
outputs. In the interest of consistency, the remaining three spectral representations
were down-sampled accordingly. Thus for each spectral representfation, a
39-dimensional spectral vector was computed once every 5 ms. ‘The array of spectral
vectors was the only information used for acoustic segmentation.

Acoustic Segmentation Algorithm

Acoustic segmentation was based on an algorithm developed in conjunction with the
detection of nasal consonants from continuous speech (Glass & Zue, 1986). Realizing
that certain acoustic changes are more significant than others and that the criteria
for boundary detection often change as a function of context, we adopted a strategy
of measuring the similarity between a given spectral frame and its immediate
neighbors. The algorithim moves on a frame-by-frame basis from left to right, and
attempts to associate a given frame with its immediate past or future. Specifically,
each frame builds up forward and backward cumulative distance conlours Dp(n,i)

and Dp(n, —i) respectively, with D(n,s) defined as:

i
D(n,5) =} d(n,7)
i=0
where d(n, §) denotes the Euclidean distances between the feature vector of the
current frame, #(n), and that of the n + ;% frame, #{(n + j). Then the decision
strategy is:

Loop fori from 1 to I,
until | Dp(n,3) — Dg(n, —<) |> Dupin
finally
if Dp(n,s) — Dg(n,—3) >0
then associate frame n to its past
else associate frame n to its future

Thus ;.45 constrains the observation range. Currently this value is set to 50 ms. The
threshold Dy, is 2 minimum distance threshold indicating when the difference
between the two cumulative distance functions is significant enough to form an
association. By terminating the search as soon as the threshold is exceeded, the
algorithm self-adapts to capture short regions that are acoustically distinct. In
addition, the algorithm assigns an association strength, A(n), to each frame, which
measures the maximum difference between Dy and Dp in the range of association.
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Figure 1. The acoustic segmentation algorithm.

An example of the association waveform is shown in the top part of Figure 1. The
positive-to-negative zero-crossings of the waveform correspond to potential acoustic
boundaries. To minimize the effect of detecting small and insignificant acoustic
changes, this association waveform is smoothed with a Gaussian filter. For the
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association waveform.

The information in the smoothed association waveform can be captured in the form
of a pulse train, also shown for the example in Figure 1. The pulse train provides
information not only on the location of the acoustic boundaries, but also on
boundary strength (by the height of the pulse} and abruptness (by the width of the
pulse). In particular, we found that the height of the pulse is well correlated with the
significance of the acoustic change. In other words, smaller pulses typically
correspond to insignificant acoustic changes, or false boundaries. Thus it is possible
o set a boundary threshold and consider only those spikes whose heights exceed this
threshold.

By varying the boundary threshold on the pulse height as welil as the amount of
smoothing performed on the association waveform, we can control the system’s
sensitivity to detecting acoustic boundaries. If the sensitivity is set too low, then the
system may miss some of the legitimate boundaries. On the other hand, a high
sensitivity would tend to insert false boundaries. For the sentence shown in Figure 1,
the acoustic boundary locations are superimposed as dotted vertical lines on the
spectrogram. By comparing with the time-aligned phonetic transcription above the
spectrogram, we see that most of the major acoustic boundaries have been located
accurately.
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Experimental Conditions

The acoustic segmentation algorithm described above was applied, with varying
sensitivities, to each of the spectral representations for a given utterance. The
sensitivities were chosen by varving the amount of Gaussian smoothing {using the
smallest possible increment for the 5-ms analysis rate) and choosing a boundary
threshold that maximized the probability of a boundary being valid. For each
experiment, the output of the acoustic segmentation was compared with the
time-aligned phonetic transcription of the utierance, and the extra and missed
boundaries (insertions and deletions) were counted. The “best” result for each
spectral representation was defined to be the one that minimized the sum of the

number of inserted and deleted segments.
Databases

We employed two different databases to evaluate the various spectral representations.
The first one consisted of a total of 160 phonetically balanced sentences spoken by
three male and two female speakers. The second database contained 1,000
phonetically balanced sentences recorded from 50 male and 50 female speakers. All
the sentences were previously transcribed phonetically and the transcriptions were
time-aligned with acoustic landmarks.

RESULTS AND DISCUSSION

All five of the spectral representations were evaluated using the first database
containing over 2,600 phonetic events. The results show that the linear prediction
and auditory representations were consistently superior to the discrete Fourier
transform representations. Specifically, the critical-band spectral representation was
found to be the best (with the lowest total insertion and deletion rate—27%),
followed closely by the hair-cell and LPC representations. These representations were
consistently better than the discrete Fourier transform representations, by 3 to 4 %
on average.

In order to substantiate our preliminary findings, we decided to evaluate the signal
representations using the second, larger database of 1,000 sentences containing nearly
29,000 phonetic events. To minimize the amount of computer processing, only the
top three representations were evaluated. The results indicate $hat the auditory
representations were consistently better than the linear prediction representation, as
shown in Figure 2. The best results were all obtained with a2 Gaussian smoothing
filter of & = 5 ms. For all representations, segment insertion is much less likely for

this algorithm than segment deletion.

Our results suggest that signal representations based on auditory modeling may be
better suited to acoustic segmentation than conventional spectral representations are.
While the segmentation errors among various spectral representations did not differ
greatly in magnitude, the differences were statistically significant. That the
critical-band representation was better than the hair-cell representation in the
preliminary evaluation can be attributed to the fact that the first database is rather
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Figure 2. Boundary alignment errors.

small and thus does not provide a good indication of acoustic and interspeaker
variabilities. The first database was collected from five speakers using a
noise-canceling microphone, whereas the second database was collected from 100
speakers using an omni-directional microphone. Closer examination of the results
reveals that the performance of the hair-cell representation actually improved for the
second database, while the performance degraded for the other two representations.

The hair-cell representation offers a number of advantages. The hair-cell model tends
o enhance the onsets and offsets in the critical-band channel outputs. For
low-amplitude sounds, the output corresponds to the spontaneous firing of the
neurons and is greatly attenuated. These two effects combine to sharpen acoustic
boundaries in the speech signal. Figure 3 illustrates the outputs from the three
spectral representations. We see that extraneous boundaries are less likely to be
observed in the hair-cell representation. We should also note that due to the
saturation phenomena, formants in the envelope response appear as broad-band
peaks, obscuring detailed differences among similar sounds. Asa result, we surmise
that this representation may be appropriate for broad phonetic classification as well.

The acoustic segmentation algorithm produces segmentation errors approximately
25% of the time. Closer analysis shows that most of the errors were due to the
deletion of subtle acoustic boundaries. Since our approach to phonetic recognition is
to utilize the output of the acoustic segmentation algorithm in order to establish
robust acoustic landmarks for subsequent detailed analysis, these deleted segments
may be recovered af a later stage.
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Figure 3. Comparison of different spectral representations.

SUMMARY

In summary, we have investigated the usefulness of five different spectral
representations for acoustic segmentation. We found that the spectral representation
based on the mean-rate response of an auditory model gives the best performance.
This signal representation, together with the acoustic segmentation algorithm, can
potentially be used to delineate the speech signal into acoustic regions for further
phonetic analysis.
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through Naval Electronic Systems Command.|
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