A REVIEW OF VLSI STRUCTURES FOR THE IMPLEMENTATION OF
FORMANT SPEECH SYNTHESISERS(1)

C.D. Summerfield(*)

(*)Centre for Speech Technology Research
University of Edinburgh
Speech, Hearing and Language Research Centre
Macquarie University
and
Department of Electrical Engineering
University of Sydney

ABSTRACT - This paper reviews the VLSI structures for the
implementation of formant speech synthesisers. It concen-
trates on the application of bit-serial arithmetic structures for
the implementation of signal processing functions.

INTRODUCTION

The parallel formant speech synthesiser has been shown (Holmes(1983)
and Clark, Summerfield & Mannell(1986)) to produce superior speech
quality and intelligibility. Up to now real-time implementations of paral-
lel formant synthesisers have been constructed using general purpose sig-
nal processing devices (Quarmby & Holmes(1984) and Summerfield &
Clark(1986)). The major difficulty with these designs is that a number of
compromises have to be made to achieve real-time performance. In the
Quarmby & Holmes(1984) synthesiser a number of the less important
parameters are fixed, whereas in the Summerfield & Clark{1986) designs,
considerable extra circuitry was included to supplement the synthesis cal-
culation to maintain flexibility. In this paper a number of VLSI struc-
ture are reviewed that allow a highly flexible synthesiser design similar
to that described by Clark, Summerfield & Mannell{(1986) to be imple-
mented as a single VLSI device. Throughout the design, bit-serial arith-
metic structures based on the VLSI primitives used in the FIRST silicon
compiler and described by Denyer & Renshaw(1985) have been utilised.
This technology is ideally suited to speech synthesis applications. It
allows extremely high internal data resolution to be realised within com-
pact VLSI structures. However, the high data resolutions have a conse-
quential processing time penalty, but, as will be described in this paper,
the processing bandwidth of modern VLSI technologies is far in excess of
that required for real-time speech synthesis and, thus, can be ignored in
this application.

The following discussion will concentrate on the VLSI implementation of
the formant channel filters and a scheme for generating the resonance
filter coefficients from the formant frequency and bandwidth data. The

compact structures produced by using a bit-serial approach allows all the
synthesis function to be implemented on a single chip.

FORMANT CHANNEL FILTERS

Central to the design of the parallel formant speech synthesiser is the
implementation of the formant channel filters. A bit-serial approach is
used exclusively to implement this section of the VLSI synthesiser.
There are four circuits in the channel filter design, the input excitation
function mixer and gain circuits, the resonance filter circuits, the fixed
formant skirt filters and the output accumulator circuit.

The mixer and gain have been combined in the VLSI implementation to
minimise the VLSI primitive component count. In this circuit 2 serial
multipliers are used to control the gain of the voiced and fricative excita-
tion functions independently. The output of the multipliers is connected
to an adder primitive to combine the excitation waveforms. In this
arrangement it is necessary to provide the absolute gain of both the
voiced and fricative components in the waveform.

The formant filter calculation is performed on the bit-serial data provided
by the mixer/gain circuit. The formant resenance filter is realised as a
second-order direct form 2 recursive digital filter as shown in figure 1a.
The output sample values of this filter are calculated using the equation:

oft) = i(t)+olt—7)al+o(t—27)a2 (48}

Where o(t) is the output sample value and is calculated from the sum of
the input sample value i(t) and the sum of the product terms, o(t—r)al
and o(t —271)a2. al and a2 are the resonance filter coefficients.

OUTPUT oft) - - - - DIFFERENTTAL
. ouTPUT
B e —

SHIFT REGISTER}. [SHIFT REGISTER
SR1 SR2

MULTIPLIER
i

MULTIPLIER
o(t) 2

a2

Figure la. Second-Order Filter. Figure 1b. Bit-Serial VLSI Structure.

The second-order filter is implemented in a serial arithmetic structure
using 2 shift register, 2 multipliers and 2 adder primitives connected as
shown in figure 1b. In this structure the 2 multipliers, M1 and M2, per-
form the product calculation o(t—r)al and o(t—2r)a2, respectively. As
the structure is clocked the serial data in SR1 is applied to the input port
of the serial multiplier M1. At the same time, the serial representation
of the coefficient value al is applied to the coefficient port of the

349

multiplier to produce the first product term at the output. A second mul-
tiplier M2 is clocked concurrently with M1 to produce the second product
from the serial representation of o{t —27) stored in SR2 and the coefficient
a2. The clocking also shifts the serial value in shift register SR1 to SR2
for the following calculation. The product terms at the output of M1 and
M2 are applied to a serial adder structure Al to form the partial summa-
tion. This is combined with the input value i(t) in a second adder primi-
tive A2 to complete the filter calculation. The recursive path is formed
by connecting the output of the second adder circuit to the input of the
first shift register SR1. It is necessary in the filter calculation to apply
some form of non-linear truncation of the results before it is applied to
the shift register structure. In the present design rounding is applied
before truncation to minimise numerical errors in the filter calculation.

In this structure the data is represented in a bit serial form using a 2’s
complement format. All calculations are performed LSB first and sign
extensions are automatically applied by the arithmetic structures. It is
important at the outset to consider the resolution of the data representa-
tion in the filter calculation as this determines, to some extent, the size of
the VLSI structure and, to a greater degree, the speed of the computa-
tion. To maintain good signal-to-quantisation noise ratio in the output
synthetic speech it is necessary to use a long data word-length within the
filter structure. In the present design 24-bit data representation is
specified for the filter calculation. This specification exceeds the signal-
to-quantisation noise performance from synthesiser designs baséd on gen-
eral purpose signal processing devices.

By rearranging the primitives in this structure to form a non-recursive
circuit, an anti-resonance filter may be produced. The same data resolu-
tion specification are applied for good signal-to-noise performance.

The skirt filters for formant channels F2, '3, F4 and F5 are simple
differentiators. These can be implemented by introducing an extra sub-
tractor primitive in the formant filter structure. It is convenient to
include the subtractor here as the previous filter output value (o(t—17)) is
available from the shift register. The skirt filter for F1 is a fixed second
order section containing poles and zeros and is implemented separately
from the resonance filter structure. Work is progressing to minimise the
filter size by approximating the coefficient values as combinations of
power of 2 components. This enables the multiplying operation to be sub-
stituted by smaller adder and subtractor primitives.

The results of the formant channel calculations are accumulated in a sin-
gle shift register. Formant channel results are either added to, or sub-
tracted from, the shift register value by multiplexing an adder or sub-
tractor primitive at the input to the accumulator register.

350

Even with the extended data resolution, the clock rate for real-time
speech synthesis for this structure is extremely modest for modern VLSI
technologies. Therefore, it is practical to multiplex the formant filter
structure (and the mixer/gain structure) for all formant channel filter cal-
culations (F1 to F5 and Fn) in the synthesiser design and stiil produce
realtime operation with relatively modest clock rates. Apart from the
multiplexing logic to direct the input and output serial data, the only
additional circuitry required is an extension to the shift-registers SR1
and SR2 to accommodate the increase in data storage requirements for
each formant channel (Jackson, Kaiser & McDonald(1968)).

COEFFICIENT GENERATION

The coefficient values al and a2 used in the formant resonance filter cal-
culation are derived from the formant frequency and bandwidth
specification using the equations:

al = 2Rcos(d) (2a)

a2 = —R2 (2b)
R is the radial distance from the origin (on the z-plane) and is derived
from the formant bandwidth specification (8) by R=exp(— wf37). The vec-
tor angle (on the z-plane) § is derived from formant frequency (@) using
the hertz-radians relation §=27pr. In both these equations t represents
the synthesis sampling interval (100uS).

{{1]

The formant filter coefficient are derived from the input formant fre-
quency and bandwidth specifications using 2 Programmable Logic Arrays
(PLA’s) and 2 serial multipliers as shown in figure 2 and has the capacity
to generate all resonance filter coefficients within every sample period.
PLA1 determines the z-plane radial distance (R) from the bandwidth
specification () by providing the mapping R=exp(~7f87). The cosine
term in equation 2a is derived from the input frequency specification (¢)
by using a second PLA (PLA2) to perform the mapping cos(§). Two serial
multiplier primitives are used to derive the coefficient values from the
output of these arrays. The value of a1/2 is determined by computing the
product Rcos(d) from the data output of PLA1 and PLA2. This can be
doubled by bit-shifting (shift register scaling) to form the coefficient value
al. The negative result of a2 (—a2) is produced by squaring the output
value from PLA1 using a second serial multiplier. The negative result of
this may be cancelled in the formant filter calculation by substituting a
subtractor primitive in place of Al in the formant filter structure.

The absolute size of the PLA’s are determined by the frequency and
bandwidth resolution required. However, the size of PLA2 can be halved
by using the relation cos(d)= —cos(w—§). A half size PLA is constructed
to cover the range § = 0 to #/2 radians. The correct result for frequen-
cies above this range is achieved by reflecting the frequency value about
w/2 radians and taking the negative result at the output of the PLA.

Two exclusive OR gate buffers (XOR1 and XOR2) controlled by the MSB
of the frequence address bus are used to perform this operation.

o
FREQUENCY SER1AL
MULTIPLIER 1t >
BANDWIDTH 1 al/2

A
ANDWID |! . —)I | l coefficient
S SR SR SR e —
. SN EATEE, SeRTAL
_,{ XOR 1 ‘ XORZ MULTIPLIER 2 i

-a
PLAL coefficient

exp(-T37) PLA2
cos (2 ¢7)

Figure 2. Coefficient Generator VLSI Implementation.

SOURCE FUNCTION GENERATOR

The strategy for producing voiced and fricative excitation functions in the
VLSI speech synthesiser is similar to that used in the real-time hardware
implementation described by Summerfield and Clark (1986).

The pitch period is controlled by a 16-bit programmable counter circuit.
This counter initiates the glottal volume/velocity pulse generation at the
start of each pitch period. In the VLSI structure a stylised glottal
volume/velocity function is stored in a PLA structure. This is addressed
by an accumulator which is incremented by glottal pulse rise and fall
slope factors. An overflow condition from the accumulator is used to reset
the glottal pulse generation and it is not re-initiated until the start of the
next pitch period.

Four glottal waveform values are produced every sample period. A sim-
ple down-sampling filter with coefficient values based on powers of 2 is
used to combine the glottal function values to produce a single glottal
volume/velocity function value. The radiation characteristic is introduced
at this point by differentiating the full glottal volume/velocity function.

Fricative noise is generated by a serial random bit sequence generator.
This consists of a serial shift register with a number of exclusive OR
feedback loops. A serial multiplier is used to produce voiced fricative
excitation by modulating the random bit sequence with the glottal
volume/velocity function. Spectral shaping of the fricative signal is pro-
vided by a fixed second-order section based on power of 2 coefficients.

SYNTHESISER CONTROL

Synthesiser design contains an internal RAM for storage of all the syn-
thesis control parameters. At the start of each calculation the RAM is
accessed by the synthesis structures and all the tract function parameters
(formant frequencies, bandwidths and gains) are updated. The source
function parameters (pitch period, glottal pulse rise and fall factors and

352

the fricative voicing index) are read from the internal RAM at the start
of every pitch period. This allows any synthesis control parameter to be
updated as often as required. Two output clocks are provided for external
circuit timing, the sample rate clock (10KHz) and a pitch period clock.
These are used to synchronise the external controlling circuitry and pro-
vide controls for various synthesis data updating strategies, including
pitch synchronous, frame synchronous or continuous updating of interpo-
lated synthesis data.

COMMENTS AND CONCLUSIONS

It is estimated that these VLSI structures have 8 times the processing
bandwidth required to produce real-time synthetic speech. This may be
utilised in several ways. The design may be reduced to a multiplexed
structure containing single set of arithmetic primitives. This would pro-
duce an extremely compact single channel speech synthesiser design.
Conversely, the multiplexing arrangements may be extended to produce a
multi-channel high performance formant speech synthesiser device.

NOTES

(1) This work forms part of the author’s candidature for the degree of
Doctor of Philosophy at the Department of Electrical Engineering,
University of Sydney.

REFERENCES

CLARK, J.E. SUMMERFIELD, C.D. & MANNELL, R.H.(1986) "A High
performance Parallel Formant Speech Synthesiser"”, (this conference).

DENYER, P. & RENSHAW, D.(1985) "VLSI Signal Processing: A Bit-
Serial Approach”, (Addison-Wesley).

HOLMES, J.N.(1983) "Formant Synthesizers - cascade or parallel?",
Speech Communication, 2, pp 251-273,

JACKSON, L.B., KAISER, J.F. & McDONALD H.S.(1968) "An Approach
to the Implementation of Digital Filters" IEEE Trans Vol AU-16, No3, pp
413421

QUARMBY, DJ. & HOLMES J.N.(1984) "Implementation of a parallel-
formant synthesiser using a single-chip programmable signal processor",
IEE Proec. Vol 131 Pt F No. 6, pp 563-569.

SUMMERFIELD, C.D. & CLARK, J.E.(1986) “Implementation of a High
Performance Speech Synthesiser”, (this conference).

353

