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ABSTRACT - A computationally fast technique for deriving spectral
information including formant information from speech waveforms is
presented. Its use in automatic recognition of vowels and some
consonants in continuous speech is briefly described and the
relationship of the spectral display obtained using the new
technique to the Bark scale is discussed.

INTRODUCTION

In interviewing one of the expert phoneticians working on the FOPHO project
(0'Kane, 1983) we discovered that one of his specialisations was an ability
to decipher printed speech waveforms in that he was able to perform rough
phoneme-level segmentation of the plotted waveform and could label the
phoneme segments with various perceptually meaningful features. These
features include the 'obvious' ones of fundamental frequency (and hence
1ikely sex of the speaker), rate of speaking {time-scale is provided), and
Tocations of stressed vowels, fricatives and silence. More interestingly
however, our phonetician can also give the approximate identity (place of
articulation) of vowels and fricatives and can often label laterals, nasals
and plosives as such. Where he is uncertain of the manner and place
classifications of a sound he can produce a likely set of alternatives.
Where he is uncertain of the number of phonemes in a particular segment of
speech he can, by reasoning about the length of time involved and the
speaker's typical speaking rate, put upper and lower bounds on the number
of phonemes present. Furthermore, he can often spot peculiarities in
phonation such as a creaky voice.

We decided that an attempt to capture this waveform reading expetise would
provide a useful alternative recognition knowledge source to the LPC-based
FOPHO algorithms. This paper outlines results obtained when investigating
extraction of information for vowel recognition.

SIGNAL PROCESSING TECHNIQUES USEFUL FOR WAVEFORM READING

To capture the expert's knowledge we asked the phonetician to hand-segment
and label a large number of passages of continuous speech produced by a
variety of speakers from the Australian English database (0'Kane, Millar
and Bryant, 1983) and furthermore we asked him to provide a rationale for
his segmentation and labelling decisions. This rationale seemed to often
be given in terms of features relating to both zero-crossings per unit time
and waveform ampliitude information.

To extract these features automatically we developed several related
waveform analysis techniques the outputs from which were used for
specialised feature extraction. One technique which led to a
computationally fast segmentation algorithm has been described (0'Kane,
Gillis, Rose and Wagner, 1986). Another useful function is the function we
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call M1. This function is defined as the inverse of the time between
adjacent points (called W1 points) which are themselves mid-way in time
between vaileys and peaks in the positive-gradient sections of the speech
waveform. For speed of computation M1 is actually computed by noting the
number of waveform samples between W1 points and assigning as the frequency
value associated with the M1 point a pre~-computed value equal to the
sampling frequency divided by this number. The time between W1 points will
always be equal to integral multiples (by an integer > 4) of half the
sampling period - that is why the frequency values can be pre-computed and
that is why in Figures 1(a) and (b), both of which are examples of M) for
speech sampled at 20kHz, one notices hyperbolically quantised striations
(particularly noticeable in the top of the diagrams where the striations
are most separated). The time value associated with an Ml point is the
time mid-way between the time values of the W1 points used to obtain the M1
frequency.

In Figure 1(a) the M1 graph for the front diphthong /ei/ is shown while
Figure 1(b) displays the M1 graph for the low back vowel /o/. As can be
seen from the figures, for the front vowel region M1 has no values below
about 950 Hz and a scatter of values above 950 Hz. The back vowel, on the
other hand, is characterised by having almost all its M1 values in the
range 500-1400 Hz. Furthermore, the M1 graph for the back vowel displays
relatively stable 'tracks', the first two of which correspond to the
formant tracks for this vowel. Other interesting features of the MI graphs
are that examples of /s/ are characterised by having no values below about
4400 Hz while examples of nasals, apart from the devoiced section, have no
values above 950 Hz.
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Figure 1{a): The function M1 for Figure 1(b): The function M1
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RELATIONSHIPS TO PERIPHERAL AUDITORY PROCESSING

The hyperbolic gquantisation of the frequency scaie in Figure 1 is somewhat
reminiscent of the Bark scale of frequency which has been used for
depicting spectral information in disucssions {cf. Bladon and Lindblom,
1981) of theories of peripheral auditory processing based on the concept of
critical bands (Zwicker, 1961). Noting this we described the information
displayed in Figure 1 in another way. In the diagrams in Figure 2 the
number of dots in each striation in M1 style displays taken across the
steady-state region of a vowel have been counted and the overall number of
points is normalised out of 100. For ease of display every second
striation band is represented; points from non-displayed bands have been
assigned to neighbouring displayed bands and the result has been
re-normalised. Examples of such ‘averaged M1' displays for a front, a
central and a back vowel produced by a male speaker of Australian English
are given in the figure. Such averaged M1 displays are typical of the type
of patterns seen across all male speakers studied so far (15 male speakers
each reading 11 different /h-d/ words). From a strictly automatic speech
recognition approach a method of distinguishing between these different
patterns would be sufficient (cf. Kuhlwetter's (1978) vowel recognition
algorithm also using a waveform-based technique). However as many of the
other algorithms to be incorporated into FOPHO are formant or formant track
based and because of the number of formant based studies in the speech
literature, we decided that formant extraction was desirable even from a
speech recognition point of view. This is discussed in the next section.

As in displays of spectral information using a Bark scale the information
in the region of low frequency in the diagrams in Figure 2 is much more
finely quantised than it is in the high frequency region. However, the
axis scale in these diagrams is not the Bark scale as can be seen by
considering Figures 3(a) and (b). Figure 3(a) is a graph of critical band
number or Bark versus frequency, Figure 3(b) is a graph of striation band
number versus frequency for 10 kHz sampling where the striation band

(a) (b)
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Figure 2(a)-(c}: Number of points
(normalised) in striation band against
striation band frequency over steady—gtate
of vowels /i/, /a/ and /o/ in Australian
English (10kHz sampling rate for speaker

1 (male).
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numbering is assigned with a view to making the fit to the Bark Scale as
good as possible. In an attempt to obtain a better fit to the graph in
Figure 3(a), we considered the graphs of striation band versus frequency
associated with sampling rates lower than 10 kHz. We found that the best
fit to the graph in Figure 3(a) was the one displayed as Figure 3(c) which

1 kHz down to .67 kHz and 1.25 kHz sampling from .67 kHz to .25 kHz. It
will be noted that the graph in Figure 3(c) is a very good approximation to
Figure 3(a) apart from the sampling rate changeover points.

RECOVERING FORMANT INFORMATION

Studies of composite Mi displays obtained using the composite striation
band scale of Figure 3(c) were rather inconclusive in the sense that such
composite M1 displays did not look particularly close to the Bladon and
Lindblom (1981) spectra. However in deriving these composite averaged M1
spectra we studied the standard averaged M1 spectra (diagrams of the type
displayed in Figure 2) for the same piece of speech sampled at several
different frequencies (obtained by downsampling) and noted that the vowel
formants seemed to 'appear' in the displays for various sampling rates and
not to be so prominent in disp]ay§ for other sampling rates. This Ted us



Qur algorithms for calculation of the first and second formants are as
follows. The first formant is calculated from the normalised M1 display
associated with 1,666 Hz sampling as foliows:

First formant =

P {number of points in striation band x striation band frequency)
all

striation bands

100

The algorithm for the second formant is the same except for the fact that
10 kHz sampling is used.

Using these algorithms the results for the average vowel formants for 15
males and 18 females obtained by this method are shown in Figure 4. For-
comparison the formant values got by applying the McCandless algorithm
(McCandless, 1974) to FFT and Linear Prediction analyses are given in
Figure 5. The match in the front vowel region is not as good as the back
vowel region - we have some evidence that 20 kHz sampling might be more
appropriate in the second formant algorithm. Nevertheless the same overall
trends are to be seen between the two types of formant extraction. Again
it must be emphasised that our technique for formant extraction is
computationally much faster than the FFT/LPC/McCandless method.
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Figure 4: Average for 15 male speakers (dark Figure 5: Average for 15 male speakers (dark
lines) and 18 female speakers (dotted 1ines) 1(ines) and 18 female speakers (dotted lines)

of the first and second formant values for of the first and second formant values for vowels
vowels in Australian English (high front to in Australian English (high front to low back).
low back). Formant extraction method used is Formant extraction used is FFT/LCP/McCandiess.
the technique described here.
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Formants extracted using our algorithm and vowel durations obtained from
the segmentation algorithm (0'Kane et al. 1986) provide computationally
inexpensive input to a previously developed vowel recognition algorithm for
Australian English (0'Kane, 1981). Tested on the same material as was used
for testing the segmentation algorithm, this vowel recognition algorithm
correctly classified all vowel segments according to broad tongue height
descriptions (high, mid, low), broad front-back criteria (front-central and
central-back) and dual length criteria (short and long) .

CONSONANT RECOGNITION

Recognition algorithms for three classes of consonants - nasals, fricatives
and plosives - have also been developed using the averaged M1 function.
However we have not as yet perfected a recognition algorithm that is not
speaker dependent for identifying the nasal consonants. For any given
speaker the distinction between different nasal consonants is easy to
define but generating an algorithm to work across speakers is difficult,
But then the speaker idiosyncrasy of nasals is what makes them so useful in
speaker recognition algorithms so maybe this result is not too surprising.

However it was relatively simple to devise a speaker-independent algorithm
to distinguish between fricatives associated with each place of
articulation. Overall the fricatives had an 82% correct classification
rate when tested on a one minute reading passage read by 5 speakers.
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