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ABSTRACT - The two~dimensional model of the cochlea is solved in the
time-domain. The use of the bi-linear transformation Teads to faster
and stable responses over previous methods. Plots of basilar membrane
velocity are presented for an active model both as a function of
distance and frequency.

INTRODUCTION

One way of improving our understanding of speech perception is to model the
functions involved in the act of hearing. A well-known model of the auditory
system is derived from the two-dimensional mathematical description of the
cochlear chamber. It represents the best compromise between the inaccuracies
of a one-~dimensional model and the computational complexities of a
three-dimensional representation.

Its use in the time-domain ,however, has been restricted by the inability of
known solutions to converge unless very small sampling times are adopted. By
using the bi-Tinear transformation a stable and a faster solution has been
developed.

DESCRIPTION OF MODEL
Solution technique

The mathematical derivation of the model from Viergever (1980) yields the
boundary-value problem posed by Fig. 1. The problem of Fig. 1 is the solution
of Laplace's equation subject to boundary conditions. One of the easiest and
most flexible techniques for solving this is the finite difference method
(Isaacson & Keller,1966).The method involves representing the pressure
differences by a set of discrete points in the x and y directions.The
equations are also replaced by second-order accurate approximations and the
problem is transformed to that of solving a matrix.
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Figure 1. Boundary value problem of the two dimensional cochlear model
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Both the key issue and the main difficulty of the solution is the Basilar
Membrane(BM) condition and the complex-valued BM impedance Z(x;s). Although a
frequency-domain solution has been successfully tried ,a time~domain
sotution,which is more practical for speech processing, requires solution at
each time-step and can lead to long computation times. Furthermore, the

discretisation in the time-domain must not Tead to instability.

The stapes condition can be discretised using the forward difference
approximation:
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The expression 2jwp/Z(x;s) for the BM pressure gradient exhibits a high-pass
filter characteristic and this must be preserved. The bi-linear
transformations was chosen as the most accurate and easiest way to discretise
the BM boundary equation.The transformation is defined by:
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Applying this for the BM condition where Z(s) = Z{x;s) (i.e. dependence on x
is implied) gives:
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The solution vector is defined by:
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Hence the resultant matrix and forcing vector are of the form:
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bmf(x) = -(1 + 26y0yM(x))
At each time=step the following matrix equation has to be solved:
AP = F (6)
The Gaussian block elimination technique (Isaacson & Keller,1966)is used to
solve the matrix. Furthermore, since the matrix is time-invariant the forward

substitution phase of the procedure is initially carried out and stored. Hence
only modification of F and back-substitution is required at each time-step.

294



Basilar Membrane impedance function

The form of the impedance function Z(x;s) can be determined from consideration
of the physical representation of the BM and surrounding structures. Various
interpretations have been proposed in order to reconcile both the description
with the physiology and the model response with the highly tuned
characteristic present in the BM measurement data of Fig. 2.

Perhaps the most accepted proposal came from Neely (1980) which assumes the
presence of an active component to account for the sharp tuning. In this model
the BM consists of mass,damping and stiffness as in the simple,passive case.
In addition the concept of a negative damping or resistance which couples the
BM with hair cell has been introduced. In this way energy can be transferred
back to the cochlear chamber causing the BM motion to be amplified. The
following form for Z{x;s) and component values are taken from Neely (1983) and
used for the results presented here:

Z{(x;8) =
“Ry(x)2
sMy(x) + Ry(x) + Ry(xd/s + (7)
sMy (%) + Ry(x) + Ko(x)/s
RESULTS

The following parameters were used: Tength of cochlea L = 2.55cm, height of
cochlea H = 0.1lcm and fluid density p = 1.0 g/cm3. The pressure differences
were represented at 409 equispaced points along the x direction and 8 points
in the y direction. Typical computation times on an IBM-PC fitted with a
DSI-32 coprocessor card was 2.5 min for 100 time-steps of the time-domain
solution.

The time-domain model was solved excited by a sinusoidal input of 5kHz. Two
cases were considered with model run times NT=40 ms, where N is the number of
solution time-steps and T is the sampling time, and sampling times of 2 and 20
microseconds respectively. These are shown in Fig. 3 together with the
solution for the equivalent steady-state response (from a frequency-domain
model}. The plots represent the averaged absolute output over the fina] 500
time-steps of the cochlear state. In all cases the responses in the region
surrounding the peak are identical. Motion of the BM in the time-domain beyond
this region is still dominated by transients and this explains the deviation
with the steady-state.

The results indicate that both the proposed time-domain model response is
valid, when compared to the steady-state, and that sampling frequencies (1/T)
no greater than ten times the highest input excitation frequency can be used.
This represents a considerable improvement over known solution methods (Allen
& Sondhi, 1979; Neely, 1981; Neely, 1983) which yield unstable responses
unless the sampling frequency is at least ninety times the highest input
frequency. Furthermore, with the bi-1linear transformation longer sampling
times Tead to warping of the response but not to instability. This is
significant as there is another source of instability arising from the spatial
discretisation of the solution space. An unstable response was evident when
the number of points used to discretise the X-direction was reduced to 246.
Hence any unstable responses which arise can be attributed to errors in the
spatial discretisation.



A better representation of the model behaviour was obtained by applying an
impulse as input and collecting the output response at selected positions. The
ratio of the Fourier transform of the output over that of the input gave the
response vs. frequency as shown in Fig. 4 for NT=20.48 ms and a sampling time
10 microseconds.In this way adjusting the parameter values can be used to

match the response to BM measurement data (Seilick,Patuzzi & Johnstone, 1982).
CONCLUSION

This technique represents a fast and stable solution of the two-dimensional
cochlear model of Fig.1l.. It can be used to both process speech and examine
the behaviour of various expressions for the BM impedance function without
fear of ambiguous interpretation of the results.
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