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ABSTRACT - A digital filter simulation of basilar membrane
vibration is described, in which the cochlea is represented
as a cascade of 128 digital filters. The parameters

of each filter are derived from the mechanical
characteristics of the membrane at corresponding points.
Using the model it is possible to simulate at each point,
the waveform of the sound pressure in the cochlear fluid,
as well as the deflection of the membrane itself.  Thus
it is possible to calculate the frequency response of

the membrane at every point relative to input at the
stapes. In addition the deflection of the membrane

along its length, at any instant in time can be obtained.
The significant advantage of this model is its relatively
rapid computation time.

INTRODUCTION

The basilar membrane (BM) varies in width and stiffness along
its length. At the basal end it is narrow and stiff, growing
wider and more flexible towards the apex. The maximum membrane
displacement will occur near the stapes for high frequencies,
and nearer the apex for low frequencies. Thus a low frequency
vibration travels a long distance down the membrane, whilst a
high frequency travels only a short distance.

The wave motion along the membrane is governed by its mechanical
properties and those of the surrounding fluid. A number of
mathematical models of cochlear dynamics have been reported,

for example Zweig (1976), Nilsson and Moller (1977), and Dallos
(1973).  However, there exist only a few practical cochiea models,
for example Lyon (1982), and Dolmazon et al (1978).  The practical
model of the cochlea presented here is a modification of the
11nea;, one-dimensional transmission-line, proposed by Schroeder
(1973).

DEVELOPMENT OF THE MODEL

A simplified electrical model of a basilar membrane section is

shown in Figure 1. The parameters M,L,C and R are the per unit
Tength series inductance, and shunt inductance/capacitance/resistance,
respectively.  The length of an elemental section is dx, and

the membrane is considered to be a cascade of N such sections,

with parameters M,L,C and R dependent on the distance x, of the
section along the membrane.



In order to make the computational task more tractable, it is
convenient to isolate each section from its neighbours.  This
isolation can be done without approximation if the interaction
between sections is modelled by loading each section with Zt,
the input impedance into the line at that particular point.

A considerable simpiification occurs if Zt is approximated by
a parallel connectin of an inductance Mt, and a resistance Rt.
(Dallos 1973).  This arrangement is shown in Fig. 2, where the
isolation is provided by the unity gain voltage amplifier.

The voltage {pressure) transfer function can then be shown to
be of the form

Vo(s) a Wp s + sBz + Wz
= K(—)( ) ) ()
Vi(s) s+ a s+ sBp + Wp Wz
lTow-pass  resonant resonant
filter pole zero

Where, s is the complex frequency variable, and K is an attenuation
factor; a is the low-pass filter pole-frequency; Wp is the
resonant pole-frequency and Bp is its bandwidth, and Wz is the
resonant zero-frequency and Bz is its bandwidth.

Since for each section, Wp is always less than Wz, the over-all
magnitude response will be low-pass, the pole/zero pair giving

a steep cut-off. The filtering action of any particular section
will thus have three consequences; frequencies below the pole
frequency Wp will be transmitted with loss K (approx unity),
frequencies near the pole frequency will resonate, and frequencies

at and about the zero frequency Wz will be attenuated quite severely.

If x is the distance of a point on the basilar membrane from
the stapes, then the resonant frequency fp, is given by Dallos
(1973), as

fp(x) = 16000(10"-0.667x) Hz .. (2)

where x is in centimeters.  The maximum frequency which will
excite the membrane is 16000 Hz, (x=0), basal end), and the resonant
frequency at the apex (x=3.5 cm) is about 70 Hz.

The actual displacement of the BM is analogous to charge on the

capacitor, and is proportional to the voltage Vm in Fig. 2.
The displacement transfer function Vm/Vi, is given by

Vm(s) a Wp
= )
Vi(s) s+a s+ sBp+ Wp




This is a low-pass filter identical to that of the pressure transfer
function (equation 1), but without the resonant zero. The cut-off
of Vm/Vi is thus less steep than Vo/Vi.

FILTER PARAMETERS

If appropriate values of the filter parameters K,a,Wp,Bp,Wz,Bz

are used in each filter section, the response of the whole BM

model can be quite realistic. Unfortunately, the filter parameters
cannot be obtained explicitly in terms of network element values
M,R,L,C,Mt,Rt. Furthermore, the element values themselves are

not all known accurately, being merely electrical analogues of

the cochlea's mechanical properties. By analysing the network

of Fig. 2, the following relationships can be obtained.

K = Mt/(Mt + M) .. (4)

Wz = 1/(LC) .. (5)

Bz = R/L .. (6)

Bp + a = Rt/L + Rt/Lt + R/L .. (7)
Wp + aBp = Rt.R/Lt.L + 1/LC .. (8)
allp = Rt/Lt.LC .. (9)

where Lt = Mt.M/(Mt + M). Equations 7, 8 and 9 are not linear,
thus an analytic solution is not possible. It is possible however,
to use the equations to put constraints on the values of a, Wp

and Bp.  But before doing so it is convenient to define two

ratios, r = Wz/Wp and q = a/Wz. The Q-factors of the resonant
pole and zero are given by Qp = Wp/Bp and Qz = Wz/Bz. Equations

7, 8 and 9 can now be written in terms of r, g and the Q-factors.

(r - 1)(q - gr/Qp + r)/q = Lt/L .. (10)
(r - 1)(g - 9/Qz + 1)/q = Lt/L .. (1)
r/Qp - 1/Qz = (r - 1)/q .. (12)

It is known that the ratio Lt/L is small, and assuming it to

be zero gives the result r = 1, that is, the pole and zero
frequencies are equal. This solution is similar to the cochlea
model of Lyon (1982). By allowing r > 1, it is possible to
obtain responses more compatible with practical measurements.
The following range of values have been found useful.

10 < Qz < infinjty; 1.01 <r < 1.4; 1<(Qp < 20; 1.00<qg < 3.0
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DIGITAL FILTER SIMULATION

A digital filter model of the BM can be derived by transforming
the equations 1 and 3 to sampled data form. Since the impulse
response of the membrane is important, the impulse-invariant
transtorm has been chosen fTor this purpose, (see Rabiner and
Gold 1975).  The form of the digital filter functions are as
follows.  The pressure transfer function is

Vo(Z) 1 - ao T+ bt + b2 1 - all + a2z
= K( ) { ) ( ) .. (13)
Vi(Z) 1 -aZ 1 -0b1Z + b2Z 1T -al + a2

The displacement transfer function is

Vo(Z) 1 - ao (1 - b1 + b2)Z
= K( ) ) < (18)
Vi(Z) 1 - aoZ 1 - b1Z + b2Z

It is clear from these equations that the displacement function
is contained in the pressure transfer function. This leads

to a simplification when the filter functions are converted into
the filter structures shown in Fig. 3.

RESULTS

Figure 4 shows a family of displacement frequency responses at
points 1/4, 3/8, 1/2 and 5/8 along the membrane, from the base.
To a first approximation the cut-off rate of these curves js
controlled by Qz, the Q-factor of the resonant zero. The peak
height and the sharpness of the peak are controlled by Qp, the
Q-factor of the resonant pole. The parameters of these curves
have been adjusted to give shapes similar to measured responses,
and this matching procedure was used to fine-tune the BM model.
The BM displacement at any particular point can also be plotted
as a function of time, and it is easy to obtain the response
of the BM to an impulse at the stapes. The displacement at
a particular instant in time can also be depicted as a function
of distance along the BM. Fig. 5 shows the membrane 4 cycles
after the onset of a 2 kHz sinewave. By superimposing several
such displacement patterns, a “displacement envelope" is obtained.
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Figure 4
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