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Abstract 

This study sets out to find the most reliable method for log-

likelihood-ratio (LLR) calculation under severe data scarcity, 

which is typical of forensic voice comparison casework. We 

compared the performances of three types of speaker 

modelling, namely a single Gaussian model, Gaussian Mixture 

Models (GMM) of different complexity, and a Multivariate 

Kernel Density Model (MVKD), using two and three-

dimensional formant frequency feature vectors extracted from 

/iː/ vowels. We varied the number of tokens used in the 

offender dataset from 2 to 6. We find that calibration of the 

systems was critical for dependable evaluation with all the 

systems tested and that the MVKD model outperformed 

Gaussian models in most cases. 

  

Index Terms: forensic voice comparison, speaker recognition, 

multivariate kernel density model, GMM-UBM, formant 

frequencies 

1. Introduction 

Likelihood ratio (LR) based evaluation of evidence has been a 

part of forensic science for a few decades now. It was first 

used in DNA testing, and since the beginning of this century, 

it has become an important part of research and practice in 

both automatic speaker verification [1] and forensic voice 

comparison [2]. There are various approaches to calculating 

LRs; Gaussian Mixture Model-Universal Background Model 

(GMM-UBM [3]) and Multivariate Kernel Density Likelihood 

Ratio (MVKD [4]) being used most commonly in voice 

comparison research. Despite their limitations, which will be 

further discussed below, various studies demonstrated that the 

LRs produced with these methods are effective in 

distinguishing pairs of speech samples of same-speaker origin 

from those of different-speaker origin (e.g. [5-10]). Automatic 

speaker verification, driven to a large extent by a series of 

NIST Speaker Recognition Evaluations, has considerably 

advanced the field, particularly in the problem areas of 

differing recording conditions and transmission channels 

between the speech recordings to be compared [11].  

Despite this progress, however, applying these methods to 

real-life casework has not been straightforward. One of the 

reasons is the nature of the data that is available to us in real-

life casework.  

Firstly we have the database availability problem. Most of 

the research advancements come at the price of requiring 

many hours, if not hundreds of hours, of speech data which 

span those differing conditions and thereby allow the speaker 

recognition systems to learn how to compensate for such 

differences if they are encountered between pairs of speech 

recordings. In most cases, forensic scientists do not have 

access to a database that is large enough and has suitable 

characteristics to be used in the particular case at hand.  

The recording conditions of forensic samples are also 

serious problems. They are usually far inferior in both quantity 

and acoustic quality to the datasets that are commonly used in 

speaker recognition research. The offender samples from 

crime scenes are often very brief. Also, more often than not 

they are compromised by background noise, such as 

background music, radio and television sets, car engine noise, 

or competing speech from other persons present. The suspect 

samples are typically recordings from police interviews. The 

acoustic quality is generally better than that of crime scene 

recordings, but they often contain ambient noise or acoustic 

artefacts of the room. In addition, the forensic scientist may 

have very little data from such interviews, as some suspects 

refuse to speak knowing that the recordings may be used 

against them. Furthermore, the forensic scientist is likely to be 

challenged by other factors such as emotional speech, 

speaking style mismatch, and ethnic or cultural accents in 

forensic samples. In short, real-life casework comes with 

much more complicated conditions than those in which most 

theoretical research work has been conducted.  

This study therefore focuses on one of those adverse 

conditions commonly found in forensic voice comparison: 

scarcity of test data. We compare the performances of various 

LR calculation methods in a situation where not many samples 

are available for testing, and examine which approach is most 

dependable under such conditions. 

Typical choices for LR calculation methods in forensic 

voice comparison are the modelling of the background and 

suspect data using single Gaussian probability density 

functions (pdf), GMM or MVKD. A comparative study 

between MVKD and GMM-UBM has already been performed 

and the superiority of GMM-UBM was reported in [6]. The 

sample sizes of the testing data in [6] were, however, 16-20 

tokens per vowel, which are much greater numbers than what 

is available to forensic scientists in many casework situations.  

LR calculation relies heavily on modelling the probability 

densities of within- and between-speaker differences, and it is 

known that small datasets cannot model the distribution as 

well as large datasets do.  For instance, the sample size of the 

test data affects the quality and utility of the resulting LR, and 

it was found in [12] that the discrimination performance 

improves as the sample size increases while the calibration 

loss diminishes steadily. Since the calibration can be adjusted 

by post-processing [13], we can deduce that the sample size of 

the test data affects the overall performance of LR based voice 

comparison.  

Is GMM-UBM still the best performing approach even 

when we have only a small amount of data for offender and 

suspect? How many mixtures are suitable in such case? Or 

does MVKD actually outperform GMM-UBM? Using the first 

three formants (F1, F2 and F3) of the single Australian 

English vowel /i:/ as the acoustic features, we examine which 

of these three techniques is more robust when the testing 



samples are limited to the size common in casework 

situations.  

2.  Procedure 

2.1. Data 

This study used two databases. For the test data, we used a 

database of 27 Australian male speakers, which was originally 

built for collecting diphthongs. The speakers in this database 

were recorded in two sessions separated by an average of two 

weeks, and at least 10 days apart. This database was first 

studied in [14], and also used in [15-18]. As a part of the 

recording task, the speakers were required to spell various 

words. Six /iː/ vowel tokens were extracted from the sections 

where the speakers spelled out the words “bide” (/biː/, /ɑe/, 

/diː/, /iː/) and “bite” (/biː/, /ɑe/, /tiː/, /iː/). This resulted in 12 

tokens altogether from each speaker (six tokens × two 

recording sessions). Their speaking styles were semi-

spontaneous. The speakers had to spell these words from 

memory, as the flash cards that cued words to be spelled were 

shown only a few seconds and hidden before they started the 

spelling task. Praat [19] was used to extract F1-F4 at the 

midpoint of the vowel duration, although this study excluded 

F4 from the analysis.  

The midpoint of the vowel duration was chosen as the 

sampling point for two reasons. First of all, it allows 

mechanical selection and consequently guarantees consistency 

of sampling across all tokens. Secondly, it is a simple way to 

reduce the effects of co-articulation with the adjacent 

segments.  

F1 of /iː/ vowel is rarely used in actual casework situation, 

since the majority of forensic samples are recorded over the 

telephone and F1 is attenuated by the bandwidth of telephone 

transmissions. However, we decided to include F1 in this 

study, as the aim of the study is to examine the relative 

performances of the different LR calculation methods, and 

absolute LR values or the strength of the /iː/ vowel as 

evidence is not the primary interest of this study.   

For the background population, we used Bernard’s 

formant data [20], which contain F1-F3 of Australian vowels 

from 170 speakers. Bernard’s database is not ideal for 

evaluating forensic casework for two reasons. Firstly it was 

collected in the 1960s, and since then Australian vowels have 

changed noticeably [21]. Also, the utterances in this database 

are extremely well controlled, i.e. produced in /hVd/ contexts 

and in isolation. They are thus in very different conditions 

from typical forensic speech samples and also from the testing 

data used in this study. However, this should not be a problem 

for the purpose of our study, since it does not interfere with 

our aim: investigating the robustness of various LR calculation 

methods against small sample size. We feed the same datasets 

to all the LR calculation methods and evaluate the perfor-

mance relative to one another, but not in absolute terms.  

2.2. Experiment 

With each of the 27 speakers in the test dataset, all six tokens 

of the speaker’s Session 1 data were used to build the suspect 

model. Session 2 data were used for building the offender 

model, but the number of tokens used was varied in 

increments of two by choosing 2, 4 and 6 tokens, respectively.  

In the same-speaker comparisons, the suspect model built 

from Session 1 data and the offender dataset built from 

Session 2 data of the same speaker were compared. For the 

between-speaker comparisons, each of the 27 suspect models 

built from Session 1 data were compared to the tokens from 

Session 2 of the remaining 26 speakers, resulting in 

27×26=702 such trials. In both types of comparisons, 

Bernard’s formant data from 170 speakers were used to model 

the background population, and LRs were calculated as the 

ratio between the likelihood of observing the test samples 

given the hypothesis that the test samples are generated by the 

suspect model divided by the likelihood of observing the test 

samples given the hypothesis that the test samples are 

generated by the background model.  

In the calculation of log likelihood ratios (LLRs), the 

suspect model was always built from all six tokens of Session 

1. For the Gaussian models, it was represented by a mean 

vector (two-dimensional for F1-F2 and three-dimensional for 

F1-F2-F3) and a diagonal covariance matrix. For the kernels 

of the MVKD, mean vectors and diagonal covariances were 

also used. For the offender models, each speaker had three 

different models built from different numbers of tokens (i.e. 2, 

4, and 6). The final outcomes are compared across the 

different techniques used.   

2.2.1. Calculation of scores 

Three methods were used in the LLR calculation: (1) a single 

multivariate Gaussian pdf; (2) four different GMM-UBMs 

with 2, 4, 8 and 16 mixtures, respectively, and with diagonal 

covariances; and (3) MVKD. Hence we evaluated a total of six 

different detectors.  

The single Gaussian model assumes that the 2-

dimensional (2D) or 3-dimensional (3D) formant vectors are 

distributed normally in a single cluster, an assumption that is 

likely to be a better approximation for low-dimensional 

formant vectors than for typically 12-40 dimensional MFC 

vectors. This model is particularly attractive when the number 

of samples for building the model is too small for a GMM, but 

can still be sufficient for training a 2D or 3D single Gaussian 

with diagonal covariance.  

GMM allows distributions to fall into more than one 

cluster and, thus, provide a more realistic representation of 

speaker data, even when the samples are only 2D or 3D 

formant vectors. However, for reliable modelling, GMM 

requires more data than a single Gaussian. Hence it is not 

obvious which of the two algorithms is preferable under 

practical forensic casework conditions of very sparse data. 

MVKD has the capacity to represent the formant data of 

the background population as a multimodal pdf of many 

kernels, each of which is a single Gaussian with a mean vector 

and diagonal covariance. Each kernel can be considered to be 

representing the distribution of formant frequencies from 

individuals in the background population. Each MVKD 

comparison, whether it is a same-speaker or different-speaker 

comparison, results in a single LR, which takes into account 

correlations between the features (e.g. between F1 and F2 of a 

single vowel) and is therefore considered particularly suitable 

for speech data where features are expected to have some 

correlation [22].  

2.2.2. Post-processing and evaluation of the results 

Prior research has shown that post-processing of the scores 

can improve the performance of speaker verification and 

forensic voice comparison considerably [17, 23, 24]. We 

evaluated our six detectors with an application-independent 

metric, the log-likelihood-ratio cost (Cllr), proposed by 

Brümmer and du Preez in [25]. Application independence 



means that neither the prior probabilities nor the error costs for 

a specific application are given, but the detector is evaluated 

by estimating expected values for priors and costs by 

averaging over the ranges of their values. Therefore, we used 

this metric to evaluate relative performances of the six 

detectors and of three offender models built from differently-

sized datasets. We also examined the effects of calibration by 

producing Cllr for both the calibrated and uncalibrated detector 

scores. We calibrated the resulting LLRs of our experiments 

using the Focal toolkit [13].  

3. Results 

3.1. 2-dimensional feature vectors (F1 and F2) 

Tables 1 and 2 show the results obtained from 2D F1-F2 

feature vectors. Each row shows the modelling of background 

population and suspect speech: a single Gaussian, GMM with 

2, 4, 8 and 16 mixtures, and an MVKD. The three columns 

show the number of tokens used to create an offender model. 

Table 1 presents the Cllr produced from uncalibrated LLRs, 

and Table 2 presents that from the calibrated LLRs.  

Firstly it is obvious that for all experimental conditions the 

overall cost of the system is considerably higher when the 

systems were not calibrated. This demonstrates clearly the 

value of calibrating system scores in each and every system 

evaluation. The calibration appears to be particularly critical 

for Gaussian-based systems, as they made much greater 

improvement on Cllr compared to MVKD.  

Table 1. Uncalibrated Cllr values for 6 types of speaker 

modelling and 3 offender sample sizes, based on 2-

dimensional F1-F2 feature vectors. The best Cllr value 

is shown in bold. 

 Number of offender tokens 

Model 2 4 6 

Normal 0.788 0.679 0.692 

GMM-2 0.887 0.883 0.883 

GMM-4 0.878 0.880 0.881 

GMM-8 0.879 0.882 0.882 

GMM-16 0.893 0.891 0.897 

MVKD 0.614 0.647 0.657 
 

Table 2. Calibrated Cllr values for 6 types of speaker 

modelling and 3 offender sample sizes, based on 2-

dimensional F1-F2 feature vectors. The best Cllr value 

is shown in bold. 

 Number of offender tokens 

Model 2 4 6 

Normal 0.546 0.485 0.463 

GMM-2 0.582 0.546 0.561 

GMM-4 0.576 0.591 0.577 

GMM-8 0.569 0.599 0.597 

GMM-16 0.661 0.653 0.670 

MVKD 0.518 0.528 0.507 
 

The MVKD system generally performs better than 

Gaussian-based systems, regardless of the number of offender 

tokens. Once calibrated, the single Gaussian model (shown as 

“Normal” in the tables) outperformed MVKD when the 

offender datasets contained more than four tokens. However, 

on the whole, MVKD seems to be more reliable than GMM 

where the amount of data for testing sample was limited.  We 

also found that the single Gaussian model is markedly better 

than GMMs for all offender data sizes.  

3.2. 3-dimensional feature vectors (F1, F2 and F3) 

Tables 3 and 4 show the uncalibrated Cllr and the calibrated 

Cllr , respectively, for the experimental conditions that use 3D 

F1-F2-F3 feature vectors. It is striking to see how poorly the 

single Gaussian models performed without calibration. 

Considering that the single Gaussian models performed better 

than GMM for both calibrated and uncalibrated systems with 

2D feature vectors, this is noteworthy. The single Gaussian 

models work well only when the feature vector is very small.  

With or without calibration, the MVKD systems 

outperformed all other systems, although the calibration 

significantly reduced the gap between MVKD and Gaussian-

based systems. Calibration improved the Cllr of the Gaussian-

based system much more than that of the MVKD.  

Table 3. Uncalibrated Cllr for 6 types of speaker 

modelling and 3 offender sample sizes, based on 3-

dimensional F1-F2-F3 feature vectors. The best Cllr 

value is shown in bold. 

 Number of offender tokens 

Model 2 4 6 

Normal 2.221 2.435 1.925 

GMM-2 0.851 0.848 0.844 

GMM-4 0.871 0.860 0.853 

GMM-8 0.882 0.874 0.871 

GMM-16 0.881 0.861 0.863 

MVKD 0.584 0.801 0.687 
 

Table 4. Calibrated Cllr for 6 types of speaker 

modelling and 3 offender sample sizes, based on 3-

dimensional F1-F2-F3 feature vectors. The best Cllr 

value is shown in bold. 

 Number of offender tokens 

Model 2 4 6 

Normal 0.603 0.512 0.545 

GMM-2 0.538 0.510 0.496 

GMM-4 0.581 0.522 0.500 

GMM-8 0.639 0.596 0.559 

GMM-16 0.624 0.553 0.566 

MVKD 0.504 0.506 0.451 
 

3.3. Number of tokens in the offender datasets 

With respect to the number of the tokens used as the offender 

dataset, we did not observe clear linear effects. For instance, in 

Tables 1 and 3, we observed the best performance where we 

used only 2 tokens in the offender dataset. Tables 2 and 4, on 

the other hand, showed the best performance when 6 tokens 

were used. We expected to have a better model (hence more 

accurate evaluation) with more data, so the results in Tables 1 

and 3 are somewhat intriguing. We suspect that this might be 

accidental, caused by the particular tokens that happened to be 

included, since the average results can be very good or bad by 

accident with such a limited amount of data. Perhaps after 



calibration such accidental elements were smoothed out, and 

more predictable results were produced. When only 2 tokens 

were used as the offender data, /iː/ tokens extracted from /tiː/ 

and /iː/ in spelling the word “bite” were used. We suspect that 

the results might have come out differently even without 

calibration, if we had tested with all the permutations of /iː/ 

tokens.   

3D F1-F2-F3 feature vectors offer only a small advantage 

over 2D F1-F2 feature vectors, presumably due to the well-

known fact that modelling in three dimensions requires more 

training data than modelling in two dimensions. 

4. Conclusions and future direction 

This study compared several methods of LR calculation under 

the constraints which we face in real-life casework scenario: 

testing datasets of limited samples sizes. A preceding study 

reported superiority of GMM to the MVKD where sufficient 

testing data are available [6]. However, under more 

forensically realistic conditions of more severe scarcity of test 

data, we discovered that the voice evidence could be more 

reliably assessed with the use of MVKD. We also found that 

calibration is essential to perform reliable voice comparisons 

regardless of the calculation methods, although the calibration 

seemed more critical for GMM-based systems. 

This experiment needs to be extended by adding more 

vowels to gain further insight, as forensic scientists usually 

combine the results from multiple vowels.  
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