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Abstract
In this paper we report on a study which demonstrates the im-
portance of using non-contemporaneous test data in evaluating
the validity and reliability in forensic-voice-comparison sys-
tems. We test four different systems: one MFCC GMM–UBM,
one vowel formant-trajectory based, one nasal spectra based,
and the fusion of the three systems. Each system is tested on
the same set of test recordings, including same-speaker and
different-speaker pairs. In one condition, the same-speaker
pairs are from contemporaneous (within-session) recordings
and in the other they are from non-contemporaneous (between-
session) recordings. Within-session testing always overesti-
mated the performance of the systems compared to between-
session testing.
Index Terms: session variability, likelihood ratio, validity, reli-
ability, forensic voice comparison

1. Introduction
In forensic casework there is always a difference in time be-
tween when the recording of the offender is made and when a
recording of a suspect is made. Thus in cases where the sus-
pect and offender recordings are produced by the same speaker,
they are produced by the same speaker speaking on different
occasions. The characteristics of a person’s voice are expected
to vary more from occasion to occasion than on a particular
occasion (see [1], p. 235; [2], p. 12). Factors increasing vari-
ability include, amongst others, differences due to relaxation
versus stress on vocal folds (e.g. when speaking the first time
in the morning versus speaking for a long time), state of health
(e.g. nasal congestion, ‘cold speech’ [3], laryngitis), speaking
style, emotional state, as well as other random or pseudoran-
dom variation from occasion to occasion. Given these obvi-
ous influences, an appropriate default assumption would be that
between-session variability does matter for forensic voice com-
parison. If one were to test the performance of a forensic voice
comparison system using same-session data, one would be as-
suming that between-session variability does not matter and
have to be able to present evidence to justify this assumption.

The existence of between-session variability affecting dis-
tributions of features extracted from speech samples of a
speaker has been acknowledged in both forensic-phonetic
(e.g. [2], p. 106; [4]) and automatic-speaker-recognition com-
munities (e.g. [5, 6]). However, empirical studies on forensic
voice comparison have often not accounted for this, and have
tested using data obtained from a single recording session (for
example, formants [7], formant trajectories [8, 9, 10, 11], voice
source [12], and automatic systems [13]).

Authors often acknowledge the need for between-session

testing, but perform within-session testing because they are us-
ing convenient databases which do not include multiple non-
contemporaneous recordings of each speaker; however, [11] (p.
33) claims that “the importance of non-contemporaneity and the
issue of whether it furnishes greater within-speaker variation
than in a single natural recording remains an empirical ques-
tion.”

In this paper we investigate the validity and reliability
(accuracy and precision) of four different systems: one mel-
frequency-cepstral-coefficient Gaussian-mixture model (MFCC
GMM–UBM) based, one vowel formant-trajectory based, one
nasal-spectra based, and the fusion of the three aforementioned
systems. Each system was trained and tested using the same
database of voice recordings. In this investigation we are not
concerned with between-session effects due to recording- and
transmission-channel differences or speaking-style differences
and do not aim to systematically investigate differences due to
state of health or fatigue. Rather, we focus on naturally occur-
ring occasion-to-occasion variability.

Data obtained from each of two recording sessions was di-
vided into two non-overlapping parts to allow for within- and
between-session same-speaker comparisons. Speaking-style as
well as the amount of data used for offender and suspect sam-
ples were controlled. In the analysis and presentation of re-
sults we focus on same-speaker comparisons, since different-
speaker comparisons are by definition between-session. Since
the amount of data employed is limited, the absolute perfor-
mance of the system is of less interest than the relative differ-
ences in performance between the two conditions.

To emulate a set of conditions which may be representative
of forensic casework, all comparisons involve a mismatch in
transmission channel, a common feature of forensic speech ma-
terial. Data used as nominal offender samples are taken from a
recording of a mobile-to-landline transmission and data used as
nominal suspect samples are taken from a high-quality record-
ing. This mismatch is accounted for in the modeling of the
background data, data used for calibration training, as well as
data used for testing.

2. Methodology
2.1. Data

The data were extracted from a database of two non-
contemporaneous voice recordings of each of 60 female speak-
ers of Standard Chinese (Mandarin, Putonghua). See [14] for
details of the data collection protocol. The first and second
recording sessions were separated by 2-3 weeks. High-quality
recordings were made at 44.1 kHz 16 bit using flat-frequency
response lapel microphones (Sennheiser MKE 2 P-C) and an
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external soundcard (Roland R⃝UA-25 EX), with one speaker on
each of the two recording channels. In addition to the origi-
nal high-quality recordings, degraded sets of recordings were
created by passing the high-quality set of recordings through
transmission channels. In this study we use a mobile-to-landline
condition to investigate the effects under a mismatch condition.
The mobile telephone (Nokia 2730 classic) used to transmit the
signal was placed in a sound booth (IAC 250 Series Mini Sound
Shelter) in the vicinity of a loudspeaker (Roland MA-7A) con-
nected to a computer via an external sound card (Roland R⃝UA-
25 EX). The high-quality recordings were played though the
loudspeaker and the acoustic signal picked up by the in-built mi-
crophone of the transmitting telephone through which a call was
established to the receiving landline telephone (Polaris NRX
EVO 450), which was connected to the external sound card via a
Trillium Telephone Recording Adapter Studio Interface (REC-
ADPT-SI). (No attempt was made to simulate potential variabil-
ity due to changes in the position of the telephone relative to the
speaker’s mouth).

In the tests of forensic-voice-comparison systems below,
recordings from the first 20 speakers (identification numbers:
01–04, 09–20, 22, 25, 26, 28) were used as background data,
data from the next 20 speakers (29–48) were used as develop-
ment data, and data from the last 20 speakers (49–68) were used
as test data.

2.2. Forensic-voice-comparison systems

2.2.1. Automatic MFCC GMM–UBM system

The automatic MFCC GMM–UBM system was of generic de-
sign. 16 Mel-frequency cepstral-coefficient (MFCC) values
were extracted every 10 ms over the entire speech-active portion
of each recording using a 20 ms wide hamming window. Delta
coefficient values were also calculated [15]. Feature warping
[16] was applied to the MFCCs and deltas before subsequent
modelling. A Gaussian mixture model - universal background
model (GMM–UBM, [17]) was built using the background data
to train the universal background model. After tests on the de-
velopment set in order to optimize the number of Gaussians in
the model, the number of Gaussians used for testing was 1024.

2.2.2. Formant-trajectory system

Manual formant measurements were made of the formant tra-
jectories of stressed /iau/ triphthong tokens on tone 1 using the
FORMANTMEASURER software [18]. Discrete cosine trans-
forms (DCTs) were fitted to time-normalized trajectories of the
second and third formant. The 0th through 3rd coefficient val-
ues used as input to Aitken & Lucy’s multivariate kernel density
formula (MVKD) [19]. See [20] for details on the procedure.

2.2.3. Nasal system

Spectral characteristics of syllable-initial bilabial nasal stop
(/m/) tokens were modelled by pole-zero model estimates ob-
tained from the middle 70% of the segments [21]. The order of
the denominator and numerator polynomials was set to 13 and
7, respectively. Cepstral coefficients were computed from the
pole-zero model envelopes and used as input to the MVKD for-
mula. After tests on the development set in order to optimize
the number of cepstral coefficients, the number used for testing
was 12.

2.2.4. Calibration and fusion

Individual systems were calibrated and fused using logistic-
regression calibration and fusion [22, 23, 24, 25, 26, 27]. The
weights for the linear transform were obtained using the pooled
procedure [28] from scores calculated from the development set
and then applied to the scores from the test set.

2.3. Evaluation procedure

In order to control for the amount of information used for
within-session test comparisons and between-session test com-
parisons, each condition used the same amount of information.
The amount of information was defined according to the num-
ber of tokens of a particular phoneme or the number of frames,
depending on the procedure employed for extracting informa-
tion from the acoustic signal. Each recording was split into two
parts (part 1 and part 2), each containing the same amount of
information (5 tokens of /iau/ for the formant-trajectory system,
10 tokens of /m/ for the nasal system, and 6016 frames for the
MFCC GMM-UBM system).

Within-session same-speaker comparisons were made by
comparing session 1 part 1 with session 1 part 2, and by com-
paring session 2 part 1 with session 2 part 2. Between-session
same-speaker comparisons were made by comparing session 1
part 1 with session 2 part 1, and by comparing session 1 part 2
with session 2 part 2. All different-speaker comparisons were
by-definition between-session and made using the same scheme
as for same-speaker between-session comparisons. Background
models were trained using between-session full-length record-
ings.

Weights for calibration and fusion were trained using scores
obtained from the development set. Data used as nominal of-
fender and suspect samples was constrained to the same amount
of information as was used for testing, as outlined above (Pilot
studies indicated that weights calculated from scores from com-
parisons using all of the data available in the original record-
ings resulted in poor calibration). In both same- and different-
speaker comparisons, session 1 part 1 was compared with ses-
sion 2 part 2. Scores obtained from both within-session and
between-session condition tests were calibrated using the same
set of weights.

Validity and reliability (accuracy and precision) were as-
sessed on the results from the test set using procedures from
[29, 28]. Validity was assessed using the log-likelihood ratio
cost (Cllr , [22]). Reliability was assessed by calculating the
95% credible interval (95% CI) using the parametric method
[29, 28].

Since the different-speaker test comparisons are identical in
both conditions, we also present measures estimated using only
same-speaker comparisons pairs, so as to more clearly illustrate
the difference between the two conditions. Validity on same-
speaker comparisons was assessed by the first term of Cllr as-
sociated with same-speaker comparisons,

Css
llr =

1

Nss

Nss∑
i=1

log2

(
1 +

1

LRssi

)
, (1)

which was calculated from same-speaker comparison pairs,
e.g. session 1 part 1 versus session 2 part 1, and session 1
part 2 versus session 2 part 2. Reliability was assessed by cal-
culating the 95% credible interval (95% CI) on same-speaker
pairs rather than all comparison pairs, since the difference in
within-session and between-session same-speaker comparisons
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is otherwise obscured by the much higher number of different-
speaker comparisons.

3. Results and discussion
Figure 1a shows the performance in terms of Cllr and the
95% credible interval estimated from both same- and different-
speaker comparisons, and Figure 1b shows the Css

llr and the
95% credible interval estimated only from same-speaker com-
parisons, respectively.
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Figure 1: (a) Measures for validity (Cllr) and reliability (log10
95% credible interval) for the different systems estimated from
both same- and different-speaker comparisons from within-
session (blue) and from between-session (red) data. (b) Mea-
sures for validity (Css

llr) and reliability (log10 95% credi-
ble interval) for the different systems estimated only from
same-speaker comparisons from within-session (blue) and from
between-session (red) data (mobile-to-landline v high-quality
recordings).

Within-session testing always overestimated the perfor-
mance of the systems compared to between-session testing. In
all instances it clearly overestimated the degree of validity. In
some cases the reliability of the systems is also estimated to
be higher, particularly for the formant-trajectory system (Fig-
ure 1b).
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Figure 2: Tippett plot showing the performance of the fused
system including the 95% credible interval estimated from both
different-speaker and between-session same-speaker compar-
isons (mobile-to-landline v high-quality recordings).
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Figure 3: Tippett plot showing the performance of the fused
system including the 95% credible interval estimated from both
different-speaker and within-session same-speaker comparisons
(mobile-to-landline v high-quality recordings).

Figures 2 and 3 show Tippett plots of the fused system on
tests of between-session same-speaker comparisons and within-
session same-speaker comparisons, respectively. The red curve
showing likelihood ratios obtained from different-speaker com-
parisons is the same in both conditions. The blue curve repre-
senting the likelihood ratios obtained from same-speaker com-
parisons is further to the right for the within-session condition
compared to the between-session condition, indicating gener-
ally higher likelihood ratios for same-speaker comparisons in
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this condition.

4. Conclusion
The results presented in this study demonstrate a clear overesti-
mation of validity and reliability when testing on within-session
data rather than between-session data. The differences in per-
formance presented here are due to factors other than mismatch
in channel conditions and the amount of data available, as these
have been controlled and accounted for in data used by the sys-
tems. Since forensic samples are always non-contemporaneous,
between-session variability should be accounted for when test-
ing the validity and reliability of forensic-voice-comparison
systems.
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[24] N. Brümmer. (2005) Tools for fusion and calibration of
automatic speaker detection systems. [Online]. Available:
http://niko.brummer.googlepages.com/focal

[25] G. S. Morrison. (2009) Robust version of train llr fusion.m from
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