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ABSRACT: In this paper we propose an efficient algorithm for a one channel noise reduction in
audio signals. One of the main objectives is fo find a balanced tradeoff between noise reduction
and speech distortion in the processed signal. This is accomplished by a system based on
spectral minimum detection and diffusive gain factors. Our approach to speech enhancement is
capable of distinguishing between language and noise interference in the microphone signal,
even when they are located in the same frequency band.

1, INTRODUCTION

The speech enhancement of noisy speech is a very important research field with applications
including suppression of environmental noise in machinery halls, mobile voice communication systems
and noise suppressors for automatic speech recognition systems with the need of higher quality and
intelligibility of voice. One of the main objectives is to maximally reduce noise while minimizing speech
distortion. To attain such an objective, there are many different ways to perform the noise reduction in
both the time and the frequency domain. Among them are methods based on spectral amplitude
estimation (Boll ,1979) (Sovka et al., 1996) (Martin, 1994) (Gustafsson et al.,, 1998) and adaptive
Wiener filtering (Hermansky et al., 1994) (Anderson et al.,1998) (Widrow et al., 1975). Even though
various noise reduction methods remove the noise, they tend to introduce several realization problems
in real-time processing.

Spectral amplitude estimation techniques estimate spectral information about the background noise
during non-speech periods and remove this portion from the spectrum of the signal during speech
periods. The noise spectrum can either be assumed as known or can be found by averaging many
samples of the signal spectrum during speech pauses.

The adaptive Wiener filtering using least mean squares (LMS) or recursive least squares (RLS) based
on training data is most efficient on disturbances similar to those present in the training data. However,
during the operation on data with unknown noise, the noise level can be underestimated and the
suppression can be slightly milder. The disadvantage of these methods is the need to record all the
noise sources, which most of the time is not feasible or even impossible. Furthermore, they tend to
introduce a perceptually annoying residual noise called "musical tones”. Complete removal of all the
residual noise is impossible in principle because the speech signal is too tightly interlaced with the
background noise in the rioisy speech signal.

In this paper, we propose a very simple but highly effective psychoacoustically motivated real-time
approach without assuming the training data-derived filter as in Wiener filtering and the known
nonstationary noise in order to achieve a balanced tradeoff between noise reduction and speech
distortion. Insiead of the complete removal of the background noise a low level of naturally sounding
background: noise remains in the enhanced speech signal during our proposed noise reduction
processing. This method is based on a concept we call “spectral minimum detection and diffusive gain
factors”.
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2. ALGORITHM DESCRIPTION

A simplified block diagram of our approach is shown in Fig. 1. The input to the noise suppressor
consists of the noisy speech samples s(t). As in almost all methods operating in the frequency domain
the first signal processing step is the calculation of the short time power spectrum A(f,T) in a time
frame T of the noisy speech signal s(t). The short time power spectrum A(f,T) is estimated using a 256
point FFT with hanning window and a frame step of 128 samples. By estimating the background noise
of the short time power spectrum the system calculates diffusive gain values F(f,T) in real time. The
diffusive gain factors F(f,T) are calculated in a two-layer structure (Fig.1): Each node of a layer is
responsible for a single mode of the power spectrum. The first layer called “minimum detection layer®
collects the present noise level and provides prefiminary gain factors C(f,T). The second layer
performs diffusion of the gain factors C(f,T) in the “diffusion layer” to obtain the final factors F(f,T). In
the frequency domain, a filtering operation is performed by multiplying the noisy speech power
spectrum A(f,T) by the diffusive gain factors F(f,T) to yield O(f,T). Finally the filtered signal spectrum
O, T)=A(T)F{,T) is transferred to the time domain by an inverse Fourier transform with original
phases in order to calculate the output signal oft).

Noisy Speech Signal s(t) Minimum  Diffusion-
,FFT Detection Layer
AAET) Layer Ar(T)

B
Diffusive Gain Factors F(f,T)
Power spectrurT AT usive Gain Factors F(f,T)

X<

O, T)=A(LT)F(ET)
IFFT
Output Signal o(t)

Fig. 1: Calculation of the diffusive gain factors F(f,T).

The idea of estimating the noise level within each mode is very easy: The corrupting background noise
is usually assumed to be stationary and the spectral characteristics of the noise changes markedly
slower than that of the speech. The suppression of slowly varying components in the noisy speech
makes a good engineering sense. This fact is the basis of the minimum detection layer of our
approach. A noise power estimate in the minimum detection layer can be obtained by detecting
minimum values of a short time signal power spectrum of the noisy speech signal. In noise-free
speech all modes are zero from time to time. if there is a permanent offset in each mode it is
supposed to be noise. Thus, the present noise level in every single mode is assumed to be the
minimum of the short time power estimate within a time interval of given length. For all modes these
minima are independently detected by the nodes of the minimum detection layer, one mode by one
node (Fig. 2). At first, the short-time noise spectral power of each single mode is computed by using
recursively smoothed periodograms with the smoothing constant a for slowly changing signals,
respectively:
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N(f, T)=aN(f, T-1)+(1-a)A(f,T) 0]

where N(f,T) is the estimated power spectral density of the noise at the time T and frequency f and the
smoothing constant is set to values betweena=0.3 ... 0.7.
Then, the minimum of ihe input power specirum is detected within a windows of | frames. These
minima M(f,T) at present time T are transformed into a gain factor function C(f,T) as described in Fig.
2 using a reduction control parameter K. With this reduction control parameter K between 0.90 ... 1.0
the filter level can be adjusted:

1) K=0 leads to C(f,T)=1, that means no filtering at all.

2) If K=1 then the full estimated noise level is removed.
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Fig. 2: The minimum detection layer estimates the present
noise level by using recursively smoothed periodograms of
A(,T) for each mode and detecting the minimum M(f,T) of
each mode within the last | frames. M{f,T) is transformed into a
gain factor function C(f,T).

While for high values of the reduction control parameter K the algorithm essentially eliminates residual
spectral peaks it affects speech quality such that some of the low energy phonemes are suppressed.
To limit this undesirable effect the minima M(f,t) are adjusted according to the mode- signal to noise
ratio (SNR) levels. The reduction control parameter can be smaller in case of a better signal to noise
ratio.

The obtained gain factor C(f,T) offers a performance superior to conventional spectral subtraction with
a speech activity detector and Wiener optimum filters based on minimizing the mean squared error
based on training data. Although these gain factors C{f,T) leads to an effective removal of noise, there
still remains a small low-level unnaturally sounding residual noise in parts of nonstationary car noise.
Thus, the new processing step called the "diffusion of gain factors" is performed in the diffusion layer
(Fig. 3). The diffusive gain factor interaction of neighboring modes quoted in Fig. 3 leads to a
smoothing of the filter coefficients C(f,T). This processing step leads to a very natural sound of the
output signal o(t) and helps to avoid the “musical tones” being a common problem of similar noise
suppressing algorithms.
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Fig. 3: In the diffusion layer there is an interaction of
neighboring modes leading to a smoother shape of the
diffusive gain function F(i,T) (D can be mterpreted as a
diffusion constant). This “ diffusion of the gain factors” avoids
the “musical tones” that are a common problem of noise
reduction algorithms.

3. RESULTS

The algorithm was tested with different speech signals disturbed by car noise. The noisy spectrograms
shown in the upper images of Fig.4 recorded in a busy street with a signal to noise ratio (SNR) of
about 5 dB (a) and in a car at a speed of 130 km/h with an SNR of about —10 dB (b). The
spectrograms of the enhanced speech signals obtained by the proposed algorithm are depicted in the
lower parts (a) and (b). Dark gray areas correspond to the speech components. Intervals between
speech utterances which are dominated by the noisy background appear as medium gray regions in
the upper diagrams and in a very light gray in the lower line, respectively. This picture clearly indicates
that only speech portions pass the system whereas the noise is suppressed. A low-level naturally
sounding background noise derived from the original noise of the processed signal is preserved and
gives the far end user a feeling of the atmosphere at the near end.

Frequency [Hz]

Time[s] ‘ Time[s]
(a) car noise in a busy street (b} car noise at a speed of 130 km/h

Fig. 4: Spectrograms of the noisy signal (upper) and the
enhanced signal (below)
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In addition to the acoustic impression of the noise suppression system there is a lucid description of
the filter performance, namely giving its modulation characteristic. In our real-time noise suppressor
the parameters are tuned in a way that the maximum transmission for each mode is found at
modulation frequencies of approximately 1 Hz (Fig. 5), corresponding to the typical modulation of
human speech. Much slower and faster modulating signal components are recognized as not
belonging to the speech signa!l and thus are considerably damped.
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Fig. 5: Modulation characteristic of the Real-Time Noise
Suppressor with parameters =348, D=0.25.

Power Spectral Voice Activity very
Subtraction Detector No training noticeable | very short unpleasant
(PSS) (2.48+0.12)
Wiener Filtering All the Noise speech
& PSS Source necessary noticeable short distortion
(3.97 £ 0.45)
weak ) light speech
Kalman Filtering Noise necessary musical large distortion
Variance tones (3.65 £ 0.35)
. unnatural
Dual Extended Noise necessary nomusical | very large smoothing
Kalmam Filtering Variance tones (4.42 +0.39)
no musical
Real-Time No No training tones or short minor speech
Noise Cancelling Assumption (self natural distortion
adjustment) ’°r‘qg'i:;e' (4.66 +0.18)

Table. 1: The proposed algorithm was compared with other
methods according to an-informal listening test (MOS) with - various
speech material. The values shown in the table are MOS points
with standard deviation.
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4. CONCLUSION

in this paper, a reai-time approach for a one channel noise reduction algorithm was presented based
on spectral minimum detection and diffusive gain factors in order to maximize noise reduction while
minimizing speech distortion. For stationary noise and non stationary noise it is effective in tne sense
that it produces a naturally sounding speech signal and suppresses the musical tones. Additionally,
our approach is simple and the computational power needed to excute the algorithm is small. Five
main features of this proposed noise suppression algorithm are shown in Table. 1 in comparison with
other methods.
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