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ABSTRACT: In this paper, we present a computationally efficient adaptive lattice-ladder predictor
for adaptive prediction of nonstationary speech signals in ADPCM. The important advantage of the
proposed predictor is capable of adaptive predicting the signal and its algorithm does not require a
priori knowledge of time dependent among the input data. The lattice reflection coefficients and the
ladder weights are adaptively adjusted by algorithms that are designed using Lyapunov theory. The
proposed scheme possesses distinct advantages of stability and speed of convergence over linear
adaptive LMS or RLS lattice predictors in ADPCM. The theoretical derivation of the lattice predictor
is further supported by simulation examples for speech signals.

1. INTRODUCTION

Many of the physical signals encountered in practice exhibits two distinct characteristics: nonlinearity and
nonstationary. Consider, for example, the important case of speech signals. It is well known that the use of
prediction plays a key role in the modeling and coding of speech signals [1]. The production of a speech
signal is known to be resulted of a dynamic process that is both nonlinear and nonstationary. To deal with
the nonstationary nature of speech signals, the customary practice is to invoke the use of adaptive
predicting. One of the application of adaptive prediction is adaptive predictive coding. Predictive coding
systems have been commonly used for encoding of speech, image and video signals. Among the
adaptive predictive coding techniques, adaptive DPCM (Differential Pulse Code Modulation) [11,12] is one
of the most widely developed for predicting coding. The primary function of the adaptive predictor is to
compute the estimate signal from the quantized diiference signal and past values of the reconstructed
signal. The difference between the input and the estimated signal is quantized and is then used for
storage or transmission.

In the last decade there has been a considerable growth in Least Mean Square (LMS), Recursive Least
Squares (RLS) algorithms and their modifications in adaptive linear predicting systems. The LMS lies in
its computational simplicity but it is highly dependent on the autocorrelation function associated with the
input signals and suffers slow convergence. Conversely, RLS exhibits consistent convergence properties
but it is computationalily expense to implement even with the availability of the fast algorithm and it exhibits
unstable performance [3]. Methods of avoiding instability have been proposed in {4]-[5] but the stability
problem of the adaptive filters have not been solved if there are some bounded input disturbances. The
two main filter realizations that have been studied are the transversal and lattice filters. The lattice filtter
has become popular in the mid-1970's, primarily in the area of speech processing [1],[6]. One might
wonder why the lattice structure is useful in light of the fact that its complexity is clearly greater than that of
a transversal filter. One of the main attractions of lattice filters is that lattice filters tend to be more robust
than transversal filters with respect to quantization and round-off noise [1]-[6]. Another advantage is that
lattice filter is a convenient realization to use when the correct filter order is not known a priori.
Furthermore the appeal of the lattice architecture is the regularity and modularity of the architecture.

In this paper, we present a computationally efficient adaptive lattice-ladder predictor for adaptive prediction
of nonstationary speech signals in ADPCM. The important advantage of the proposed predictor is capable
of adaptive predicting the signals and its algorithm does not require a priori knowledge of time dependent
among the input data. The lattice reflection coefficients and the ladder weights are adaptively adjusted by
algorithms that are designed using Lyapunov theory. A Lyapunov function instead of the cost function is
defined for prediction error between the actual and estimate signals. Simultaneously, the prediction error
convergence asymptotically rather than the minimization of the mean square error is desired to achieve.
The stochastic properties of the signals are not required and the stability of prediction error is guaranteed
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by the Lyapunov Stability Theory. On the other hand, a new adaptive algorithm using Lyapunov theory is
also designed fo update reflection coefficients so that the forward prediction errors in the lattice structure
can converge asymptotically. The proposed scheme possesses distinct advantages of stability and speed
of convergence over linear adaptive LMS or RLS lattice predictors in ADPCM. The theoretical derivation of
the lattice predictor is further supported by simulation examples for speech signals.
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Figure. 1: Block diagram of a predictive coding system
2. SYSTEM DESCRIPTION

A block diagram of the ADPCM system is shown in Figure 1. In the system, the predictor generates a
predicted value y*(n) of the current input sample y(n), and the quantized difference between these two,
e,n), is transmitted to the receiver. There are two ways to implement a linear predictor: transversal
structure and lattice structure. The later is the one we consider in this paper. Figure 2 shows the lattice-
ladder filter predictor for ADPCM. In a lattice filter, the forward and backward prediction errors are
updated by the recursions

£ = f(m+k (mb_ (n—1) @.1)

bmy=b_(n-D+k’ (m)f,_ () (2.2)

where k/and k, are the nth-order reflection coefficients for the forward and backward predictors. It is
usually assumed that k' (n) = k°(n) = k(n). In transversa! structure, those algorithms use the mean
squared eror criterion or least square criterion for determining the optimum set of predictor coefficients. In
an adaptive lattice filter, the objective is to find the optimum set of reflected coefficients that minimizes the
mean squared prediction error of the input process. There are different methods of updating the
coefficients k/ (n) and k’(n). The simple gradient algorithm is the least mean square (LMS) latiice algorithm
[7). Another lattice algorithm that converges faster than the gradient algorithm is the least squares (L.S)
algorithm [8]. The LS lattice algorithm is an exact solution to the best reflection coefficients that minimize
the sum of the exponentially weighted squared prediction errors.

The output of the lattice-ladder predictor is a linear combination of the backward prediction errors, b. It can
be represented as

P
yE(m) =Y vb,(n) @.3)
i=]
or in vector notation by
y*(n) = Vi(n)B(n) (2.4)

where V(n)is the vector of ladder coefficients and B(n) is the vector of the backward prediction error, b,
B(n) = [bl(n)’ bz(n)i bs(n): cery bp(n)]T
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An adaptive algorithm is also used to update the ladder coefficients. The predictor uses P past samples of
a signal o estimate the valiue of the current sample x(n). If we denote the estimate of y(n) by y*(n), then
the difference or the prediction error is

e(n) =y* (n) - y(n) (2.5)

which is quantized and then used for storage and transmission. It is obvious that the bit rate required for
representing the difference e(n} is lower than that for the original signal x(n). As the accuracy of the
predictor increases, the variance of the difference will decrease coding involve designing and
implementing the predictor.

y(n)

I
Figure. 2: Lattice filter predictor for ADPCM

3. PROPOSED ALGORITHM

Authors in [9] have proposed Lyapunov theory-based adaptive filtering (LAF). The design adaptive filter is
based on transversal FIR structure and the adaptive algorithm is the modification of recursive least
squares (RLS) algorithm using Lyapunov stability theory. The LAF method [11] is independent of the
stochastic properties of the signals. Based on the observations and a collection of desired response, the
filter parameters are updated in the Lyapunov sense so that the error between the desired response and
the filter output can asymptotically converge to zero. This concept and recent work of Lyapunov adaptive
filtering has lead to the development of adaptive lattice filter [7],[8], with the structure shown in Figure 2.
This lattice filter can then be used in ADPCM as an adaptive lattice predictor.

It is necessary to derive the suitable learning aigorithms for the reflection coefficients and the ladder
coefficient updates. Most of the exiting learning algorithm is based on the gradient of the cost function
which is a measure of the sum of square errors. The proposed learning algorithm operates in different
principle. A Lyapunov is used instead of the cost function.

3.1 Ladder Weights Adaptation Algorithm
The ladder weights or coefficients can be adjusted as follow

V(n) = V(n - 1) + g(n)a(n) (3.1}
where g(n)is the adaptation gain and a(n) is the a priori estimation error defined as
afn)= y(n) - V" (n-1)B(n) (3.2)

The adaptation gain g(n) in (3.1) is adaptively adjusted based on Lyapunov stability theory so that the
error e(n) can asymptotically converge to zero.

__ B (. letn=D1 a3
8 IIB(n)HZ(l 5 Ia(n)l) ¢
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To prevent singularities, the expression (3.3) is rewritten as (3.4).
e = B0 (1_3 le(n=1)1 )
TUTNBm e, T Namyia, )

where A, A, are small positive numbers. The error e(n} will not converge to zero if the adaptive gain g(n) is

adjusted using expression (3.5) [9]. However, it will converge to a ball centred at the origin of the error
space with radius of the ball relies on the values of A,, A,. Smaller values of Ay, A, contribute smaller error.

3.4)

3.2 Reflection Coefficients Adaptation Algorithm
The updated algorithm for the reflection coefficients can be summarized as follow:

ki (n) = ki (n - 1) -n; (n)r, (ﬂ) (3.5)
n{m)= f:"-z (m)+ k,' (n—- l)b,;: n-n (3.6}
() = =D (1oL =D1) where 02 ¥ 7, <1 -
IRCE T 177, (M2 | <,
The expression (3.7) is modified as (3.8) to prevent singularities.
4 (n) = bH (- 12) (1 -7 ! fi (r-Dl (3.8)
N TR ST AT YRR

Again u,, p, are small positive numbers.
4.THE DESIGN OF LATTICE-LADDER PREDICTOR USING LYAPUNOV STABILITY THEORY

The desigh of the Iattice-ladder based on Lyapunov theory predictor is described by Theorem 4.1 and
Theorem 4.2.

4.1 The design of Ladder Weights Adaptation Algorithm

Theorem 4.1: For the given B(n), if the weight vector V(n) of the predictor y*(n) =v'7 (n)B(n} is updated as
follows
V(n) = V(n - 1) + g(n)a(n)
and __ B (1_ le(n -1 4.1
M= gmr | P Temi )
where 90 < B < 1, then the prediction error e(n) (2.5) asymptotically converges to zero,

Proof: Define a Lyapunov function of error e(n)
Fn) = e*(n) (4.2)
AF(n) = F(n) - F(n-D=e*(n)—e(n—1)
=(y(m) =V (m)B(n))* -&*(n-1)
=)~V (n—=D+g" (Man)B(n))* ~e*(n-1)
=(y(m) =V" (n~1)B(m) - g” (MoUmBm))* ~€* (n—1)
=(a(n) - g(mya(n)B(n))* -’ (n-1)

=a* - gT B ~e*(n-1) @3)
Using expression (4:1)in expression (4.3), we have
AF(n)=—(1-B*)e*(n-1)<0 (4.4
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4.2 The design of Reflection Coefficients Adaptation Algorithm

Theorem 4.2: For the given f(n) and b,,(n-1), if the reflection coefficients, k,(n) is updated as follows
k(my=kn-D-n,mrn

b (n—1) Lf(n=1)1
and s = it - i 4.5
vy (1 I ] (45)

P P
where ( < Z 7, < 1,thensum of forward prediction errors 2 f; (n) asymptotically converges to zero.
i=1

i=l

: I
Proof: Define a Lyapunov function of sum of forward prediction errors Z fim
i=l

~

? F P 32
G =3 £ m = [}_} fi(n>) (4.8)
P 2 P 2 P P 2
AG(n):(z f,.(n)) —(2 f,.(n—l)) =(2 filn=1+ k,,(n)b,._l(n—l)] —[2 f,.(n-1)]
i=1 i=1 i=1 i=t

P

=(i f,.(n—l)+kl.(n—l)bH(n—l)—ni(n)r,.(n)b,._l(n-‘l)) —(Z fi(n—l)]

2

i=1 i=1

P 2 P 2
=[Z n,(n) =1, (m)r;(n)b,_ (n - 1)] - (Z filn —1)]
i=1

i=1

2 P 2
=[ﬁ 7)1 = r,(mb,, (n -1))) ~(Z f,.(n—l))' (4.7
i=l i=1

Using expression (4.5) in expression (4.7), we have

AG(n):—-[l—(zp"'r) Ii f,.(n—l)) <0 (4.8)

5. SIMULATION

In this section, we illustrate the application of the nonlinear adaptive prediction described herein to two
speech signals, which are denoted S7 and 52. Signal S2 is identical to that used by Haykin and Li [8].
Those signals are available from the WWW homepage [12].

Figure. 3, 4 show the plots of 10000 samples of the speech signals S7 and S2 versus time. Figure. 5, 6
illustrate the plots of 10000 samples of the square predictor error or the difference between the estimated
and current input values, &°(n) of the proposed lattice-ladder predictor for §1, S2 respectively. Simulation
results have shown the lattice-ladder predictor has fast error convergence property. In addition it is highly
tolerate the noise introduced by the quantizer error and has better noise resistance petrformance.

6. CONCLUSION

A new adaptive lattice-ladder predictor for nonstationary speech signals is proposed. The lattice reflection
coefficients and the ladder weights are adaptively adjusted by the algorithms that are designed using
Lyapunov theory so that the error can converge asymptotically. The stochastic properties of the signals
are not required and the stability of prediction error is guaranteed by the Lyapunov Stability Theory The

_ proposed predictor has the potential for solving difficult task in the circumstance where nonfinearity and
nonstationary are both important factor. The proposed scheme can be applied to the adaptive predictive
coding techniques such-as DPCM or ADPCM. The latter applications have yet to be explored: Simulation
examples have demonstrated the excellent convergence property and robustness to nonstationary signals
based on the new predictor design.
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Figure 3: The speech signal S1 Figure 4: The speech signal S2
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Figure 5: The prediction error for $1(x10%) Figure 6: The prediction error for S2(x10%)
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