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ABSTRACT: In this paper we propose a training method for a Piece-wise Linear (PL) binary
classifier used in a multi-modal person verification system. The training criterion used minimizes
the false acceptance rate as well as false rejection rate, leading to a lower Total Error (TE) made
by a multi-modal verification system. The performance of the PL classifier and Support Vector
Machine (SVM) binary classifier, trained using the traditional Minimum Total Misclassification Error
(MTME) criterion, is compared. The PL classifier consistently outperforms the SVYM classifier with
the TE on average 50% lower.

1. INTRODUCTION

Access control systems are becoming an increasingly important part of our life. As an example, Au-
tomatic Teller Machines (ATMs) employ a simple identity verification where the user is asked to enter
their Personal [dentification Number (PIN), known only to the user, after inserting their ATM card. If the
PIN matches the one prescribed to the card, the user is allowed access to their bank account. Similar
verification systems are widely employed to restrict access to rooms and buildings.

The verification system such as the one used in the ATM only verifies the validity of the combination
of a certain possession (in this case, the ATM card) and certain knowledge (the PIN). The ATM card
can be lost or stolen, and the PIN can be compromised (eg. somebody looks over your shouider while
you're entering the PIN). Hence new verification methods have emerged, where the PIN has either been
replaced by, or used in addition fo, biometrics such as the person’s speech, face image or fingerprints.
The use of biometrics is attractive since they cannot be lost or forgotten and vary significantly between
people.

1.1. Multi-modal Systems

Recently, person verification systems have evolved from using single-mode data (eg. speech) (Reynolds,
1995} to multi-modal data (eg. speech and face images) (Yacoub et al., 1999; Sanderson and Paliwal
2000), with the iatter systems exhibiting higher performance. In current multi-modal verification systems,
the separate modalities are processed by specially designed modality experts, where each expert gives
an opinion value of the claimed identity. By definition the opinion is in the [0, 1] interval. A high opinion
indicates the person is a true claimant, while a low opinions suggests the person is an impostor. The
opinions from the modality experts are used by a decision stage (sometimes referred to as a fusion
stage). It considers the opinions and makes the final decision to either accept or reject the claim. An
example of a multi-modal system is shown in Figure 1.
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Figure 1: Verification system based on speech signals and face images

The decision stage can be a binary classifier processing n-dimensiona! opinion vectors. The vector is
comprised of opinion values from each of the n modality experts. The classifier is trained with example
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opinions of known impostors and true claimants and classifies a given opinion vector as belonging to
either the impostor or true claimant class.

It has been shown recently by Yacoub et al., (1999) that a multi-modal verification system employing a
Support Vector Machine (SVM) (Vapnik, 1995) binary classifier provides one of the best performances.

The performance of a verification system is measured in False Acceptance rate (FA%), and False Re-
jection rate (FR%), defined as:

FA=22 v 100% FR= 9 x 100%
Ig Ct

where I, is the number of impostors classified as true claimants, I, is the total number of impostor
classification tests, C., is the number of true claimants classified as impostors, and C} is the total number
of true claimant classification tests.

To quantify the performance into a single number, two measures are often used: Total Error, defined as
TE = FA+FR, and Equal Error Rate (EER), where the system is configured to operate with FA = FR.

Yacoub et al., (1999) trained the SVM classifier using Minimum Total Misclassification Error (MTME)
criterion. In MTME training, the number of misclassifications made on the impostor class (ie. classified
as true claimants) may be significantly different than for the true claimant class. During training of a
verification system, there is usually a lot more examples of impostors than true claimants. Hence falsely
rejecting a true claimant has a much higher contribution to the TE than that of falsely accepting an
impostor. In other words training with MTME criterion does not necessarily lead fo a low TE. Moreover,
training with MTME does not guarantee EER performance. To address these problems, we propose the
use of a Piece-wise Linear (PL) binary classifier, and a training algorithm designed to minimize both the
TE and EER for a two modal verification system.

The paper is structured as follows: Section 2 describes the multi-modal database, while Sections 3 and
4 describe the speech signal and face image modality experts, respectively. The PL classifier and the
proposed training algorithm are presented in Section 5. The SVM classifiers is described in Section 6.
Experimental setup and results are presented in Section 7.

2. DATABASE

To carry out experiments for person identification/verification using speech and video information, we
have created a multi-modal database. it is comprised of video and corresponding audio recordings of
37 subjects (16 female and 21 male), divided into 3 sections, referred to as the train, validation and
test sections. While wearing different clothes for each section, the subjects were asked to perform the
following:

- 20 repetitions of “0 12 3 4 5 6 7 8 9” with a small pause between each digit (diigit sequence),
. tecite “he played basketball there while working toward a law degree” (word sequence),
. recite “5 06 92 8 1 37 4" (alternate sequence), and

- move their head left to right, then up and down, with a pause in the center before each movement
(head rotation) :

HW NN -

The recording was carried out over a period of one week in a TV studio using a broadcast quality digital
camera. Two overhead lights on either side of the subject (with two light diffuser screens) were used to
ensure good illumination. Behind the subject a blue background was fit by 3 overhead lights. The video,
recorded at a frame rate of 25 frames per second, is stored as a sequence of JPEG files with a resolu-
tion of 280 x 260. For audio recording, a low-noise directional microphone was positioned above each
subject. The audio data is stored in 32 kHz, 16-bit mono format. In total, the database occupies approxi-
mately 7 Gigabytes. For more information about the database please visit: http://spl.me.gu.edu.au/digit/
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3. SPEECH MODALITY EXPERT

The speech modality expert is based on the Gaussian Mixture Model (GMM) approach (Reynolds, 1995).
The given speech signal, sampled at 16 kHz and quantized over 16 bits, is analyzed every 10 msec using
a 20 msec Hamming window. For each window the energy is measured, and if it is above a set threshold
(corresponding to voiced sounds), 12th order cepstral parameters are derived from Linear Prediction
Coding {LPC) parameters (Paliwal, 1990). Each set of extracted parameters can be treated as a 12-
dimensional feature vector. Delta cepstral parameters are then computed using neighbouring windows
(Applebaum and Hanson, 1991) and appended to the feature vector, extending it to 24 dimensions.

Client models are generated by pooling training data for a given person and constructing an 8-mixture
GMM using the Expectation Maximization algorithm (Moon, 1996). During verification, the expert, using
the GMM of the claimed identity, provides an opinion y, on the claim s using:

N M
1 - - -
Ys = 5 Z 1og[p($;-i)\s)] where p(:ﬂl)\) = Z me‘f(zsﬂms Zin)
i=1 m=1
Here N is the number of feature vectors, ; is the i-th feature vector, A, is the model for person s,
pm is the mixture weight for mixture m, M is the number of mixtures, and N (Z, Z, ) is a multi-variate
Gaussian function with mean j and covariance matrix Z.

1)

For mathematical convenience, the opinion y; is mapped to normalized opinion z, € [0, 1] as follows:

where Ts(ys) = EM (2)

25(ys) 2%0m

1

1+ ezp(—75(ys))
Here p, is the median and o2, is the variance from the median of opinion values of true claimants.
These variables shall be referred to as normalization parameters. If we assume that the opinion values
for claimants and impostors follow Gaussian distributions A (pm, 02,) and N (pum, — 40m, 02,) respectively,
95% of the values lie in the [py, — 204 , m + 20, and [pm — 604w , Um — 204,] intervals, respectively.
Hence 7,(ys) maps y, to the [—2, 2] interval, which corresponds to the approximately linearly changing
portion of the sigmoid function z,(y,).

4. FACE MODALITY EXPERT

The face modality expert is based on the Principal Component Analysis (PCA) approach (Turk and
Pentland, 1991). Here we combine it with the GMM approach. Given a grey-scale image of a person
from the Digit Database, the location of the face is found. This is accomplished by correlation with
a template of an average face. Locations of eyes and nose, found similarly, are used by an affine
transformation to normalize the distance between the eyes and the distance between the eye line and
the nose. Next, a 85 x 65 pixel “face” window is extracted, containing the forehead, eyes and the nose,
with the locations of the eyes and nose fixed at pre-determined locations.

To normalize any lighting/brightness differences betweeen “face” windows, an offset is added to all pixels
inside the window so that their median is equal to a pre-determined value.

By concatenating the rows of the “face” window, a 56525-dimensional “face” vector is constructed. Since
processing vectors with such high dimensions is computationally infeasible, PCA is used to reduce the
“face” vector to a 50-dimensional feature vector. From here the training and verification is similar to the
speech modality expert, except that the client models are single mixture GMMs.

5. PIECE-WISE LINEAR CLASSIFIER
Let g(F) be a 2 dimensional Linear Discriminant Function (LDF) (Duda and Hart, 1873}, with the fol-
lowing form:

gu(£) = wo + w1z, +waz, wWhere @ is the weight vector 3)

Given a vector ¥ to classify, the LDF assigns it to one of two classes, A and B. Class A is chosen if
gs(F) < 0 and class B if gz(&) > 0. Hence the decision surface, which separates the two classes, can
be described by g5(F) = 0.
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The decision surface of a 2-dimensional Piece-wise Linear (PL) classifier consisting of two LDFs is
shown in Figure 2. The classifier is characterized by the parameter set A = {&, b, &}, found during
training. The PL can be mathematically expressed as:
4 7 = i3 - dand
2\ — ) 9a-3{€) iz > z2°
BEN ={ 120 it o 2 gt @
Given a vector £ to classify, we compare the value of the second component, T2 with a threshold .
Based on the comparison, g,_z(%) or gz_z(Z) is chosen as the discriminating function. The vector Fi»t
is the intercept point of decision surfaces of g;_;(£) and gz—(%). It can be shown that ™ can be found
using:

i _ om0 ;
mmt — mmt = elzmt +eg 5
M= a = e ®

where €=5-8 and f=a-¢

Hence the PL classifier can discriminate between the impostors and true claimant classes with the
following decision rule: choose impostors if A(FA) < 0 and true claimants if A(Z|A) > 0.

5.1. Training Algorithm

To find the piecewise-linear decision surface (%) = 0 which discriminates between impostors and true
claimants, we need to find the two corresponding linear decision surfaces. Since a linear decision
surface between two classes A and B can be described by g, () — g (&) = 0 (or equivalently as
Jua—wz(Z) = 0), three LDFs are required for two decision surfaces. However, for three LDFs, three
classes need to be present. In a verification system, there are only two classes (the impostors and true
claimants). To work around this limitation, we can obtain three classes by splitting the true claimant class
into two separate classes.

Let set C, contain training data from the impostor class and let D = {23,453, ... , X} be the set of
training data from the true claimant class. Sets C; and C., representing the two true claimant classes,
can be generated from D with:

Cy € {Vz;:8(F) > 0,6 €1, ... ,N]} (6)
Ce € {¥z; : 5(53) <0,5€[1, ... ,N]} (7)
where s(F) = z; — 2, is a splitting function

Let gz, g; and g, be LDFs discriminating between the data sets C,, C; and C,, as shown in Figure 3.
Weight vectors &, B, &can be found using the downhill simplex algorithm (Bunday, 1984), minimizing the
following error criterion:

FA FR FA FR

100% * 100% " 1T66% ~ 100% ®)

e=(

1 X,
o 1
Figure 2: Example of a de- Figure 3: Decision surfaces
cision surface of the piece- for a three class linear ma-
wise linear classifier chine
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6. SUPPORT VECTOR MACHINE CLASSIFIER
SVM is based on the principle of structural risk minimization (SRM) as opposed to empirical risk min-
imization used in classical learning approaches (Vapnik, 1995). Let us define a data set D of M

n-dimensional vectors belonging to two classes labelled as —1 and +1, indicating impostor and true
claimant classes respectively:

D= {(&,ue) k€ {L,... . M}, ER yp € {-1,+1}} ©)

The SVM classifier uses f(z}) = yx. to map the vectors from their data space to their label space. It can
been shown that the optimal separating suiface is expressed as:

(&) = sign(}_ awyi K (8, 5) +1) (10)
i

where K(Z,7) is a positive definite symmetric function, b is a bias estimated on the training set and «;
are the solutions of the following quadratic programming (QP) problem:

min 4 W(A) ; — AT+ $(A)¥DA

with constraints:

>0y =0 and a; € [0,C]

where: an
GHel, ... . MIx[1, ... ,M]

(A)i = o

(D=1
(D)i; = yeys K (&, %5)

The constant C'is set in our experiments to 100. The kernel functions K (7, 7) define the nature of the de-
cision surface. For our experiments we use K (&,7) = (& *7/+ 1)® which defines a 3rd degree polynomial
decision surface. This has shown to provide the best performance in preliminary experiments.

7. EXPERIMENTS
7.1. Speech Signal Preparation

Let us define Signal Quality (SQ) of a speech signal as the ratio of peak signa! power to peak noise
power. By dividing the signal into 20ms windows with an overlap of 10ms, an approximation of the signal
power can be found by the mean power of 100 windows with the highest power. An approximation of the
noise power can be found by the mean power of 25 windows with the lowest power.

A given speech signal can be modified to have a required SQ by the following means: adjust the ampli-
tude so that the maximum amplitude is equal to a pre-determined constant, then add a sufficient amount
of white Gaussian noise.

In the Digit Database, the loudness of speech signals varies between persons and different sessions
while the background noise level stays constant. Hence the quality aiso differs and needs to be normal-
ized. This was accomplished by normalizing all speech signals to have an SQ of 25 dB. Versions with
an SQ of 15 dB were also generated.

In the following text we shall refer to signals with SQ of 25 dB and 15 dB as clean and noisy, respectively.
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7.2. Expert Training

The speech expert was trained on clean digit sequences from the training section. The face expert was
trained on all available images from the digit sequences in the training section, Normalization parameters
were found by testing each expert using clean data from the validation section of the database.

7.3. Classifier Training and Testing

The experts were tested on clean data from the validation and test sections, generating two sets of
opinion vectors, Oyaiia and Oy.s: respectively. For each section there were 740 (37x20) tests for true
claimants and 26640 (36x 37 <20} tests for impostors.

The PL and SVM binary classifiers were frained on the O,.::4 Set and tested on both the Oyatiq @nd Oseqt
sets. To obtain a better idea about the performance of the classifiers, the training and testing procedure
was repeated for noisy data. The results are shown in Table 1.

SQ (dB) Validation Section Test Section

PL SVM PL SVM
FATFR ] TE FA FR TE FA | FR TE FA FR TE

25 1751176 1 3.51 | 0.03 | 7.84 | 7.87 || 346 | 3.24 | 6.70 || 0.17 | 1257 | 12.74

15 4.79 | 5.00 | 8.79 || 0.08 | 17.84 | 17.92 | 6.61 | 5.27 | 11.88 || 0.06 | 22.16 | 22.52

Table 1: Performance of PL and SVM classifiers

As it can be seen, the PL classifier consistently outperforms the SVM classifier in terms of TE. When the
classifiers were tested on the same data as they were trained with, the error rates of the PL classifier
are on average of 49% lower. When tested on unseen data, the error rates are on average 52% lower.

8. CONCLUSION

We have proposed a training method for a piece-wise linear classifier used in a multi-modal verifica-
tion system. The training method minimizes false acceptance rate as well as false rejection rate. The
performance of the PL classifier and Support Vector Machine (SVM) binary classifier, trained using the
traditional MTME criterion, is compared. The PL classifier consistently outperforms the SVM classifier
with the TE on average 50% lower. )

References

T. Applebaum, B. Hanson (1991), Regression Features for Recognition of Speech in Noise, In: Proc.
Int. Conf. Acoustics Speech and Signal Proc., Toronto 1991.

S. Ben-Yacoub, Y. Abdeljaoued, E. Mayoraz (1999), Fusion of Face and Speech Data for Person Identity
Verification, Proc. IEEE Transactions on Neural Networks, Vol. 10, No. 5, 1065-1074.

Brian D. Bunday (1984), Basic Optimisation Methods, Edward Arnold.
Richard O. Duda, Peter E. Hart (1973), Pattern Classification and Scene Analysis, John Wiley & Sons.

Todd K. Moon (1996), Expectation-maximization algorithm, IEEE Signal Processing Magazine Vol. 13,
lss. 6, 47-60

K. K. Paliwal (1990), Speech processing techniques, Advances in Speech, Hearing and Language Pro-
cessing, Vol. 1, 1-78.

Douglas A. Reynolds (1995), Speaker identification and verification using Gaussian mixture speaker
models, Speech Communication 17, 1995, 91-108.

C. Sanderson, K.K. Paliwal (2000), Adaptive Multi-Modal Person Verification System, In: Proc. First
IEEE Pacific-Rim Conference on Multimedia, Sydney 2000, Australia.

Matthew Turk, Alex Pentland (1991), Eigenfaces for Recognition, J. Cognitive Neuroscience, Vol. 3,
No. 1, 71-86.
V. Vapnik (1995), The Nature of Statistical Learning Theory, Springer.

SS8T-2000: 8" Aust. Int. Conf. Speech Sci. & Tech. 317



