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Abstract
The trend towards including both acoustic and high level speech features in speaker recognition
systems is addressed with the presentation of the speaker verification system developed by
QUT for the NIST 2004 Speaker Recognition Evaluation. The system presented is a fusion of
five subsystems including acoustic, lexical, phonetic, prosodic and durational speech features
and focuses on utilising the high level feature sets in reduced training set conditions. The
performance of the system on the development data resources available in the NIST SRE are
presented to demonstrate the effectiveness of the fused system approach.

1. Introduction

Speaker recognition has been the subject of significant
research for over a decade and for the majority of this time
researchers have focused on the use of acoustic features to
discriminate one speaker from another. This has lead to sig-
nificant success, with verification Equal Error Rates (EER)
of around 2% in matched conditions. While this perfor-
mance is impressive, the use of only acoustic features is
limiting because they suffer direct degradation in the pres-
ence of noise and environmental mismatch. Due to this,
more recent research directions have broadened to incor-
porate so called high level features in an effort to make
speaker recognition systems more robust.

When considering speech signals, and particularly look-
ing at speech features which can be used to discrimi-
nate between speakers, a hierarchy can be constructed
which relates different types of features to each other,
based on their complexity and accessibility. At the lowest
level, acoustic features like Mel Frequency Cepstral Coef-
ficients (MFCCs) can be extracted from speech waveforms
through the direct application spectral transforms and filter-
banks. At the next level prosodic features, such as pitch and
energy contours and speaking rates, are more difficult to ex-
tract from speech signals but are based on theoretical con-
structs which are independent of acoustic noise or channel
mismatch. Finally at the topmost level it is possible to con-
sider speech in terms of the phones, words and sentences
which are again, in theory, separated from the acoustic en-
vironment. It is important to note that while higher level
features are theoretically independent of the acoustic envi-
ronment in which they are collected, the mechanisms used
to collect them may still be effected by the environment -
the prime example of this is that speech recognisers have
reduced accuracy in noisy environments, so while the fea-
tures we’re referring to don’t intrinsically change between
a clean and noisy environment, the accuracy with which we
can extract or estimate them is still effected.

The estimation of appropriate high-level speech fea-
tures, the effective modelling of their characteristics and

their performance when used to discriminate speakers has
been the subject of a growing body of literature as well
as being the focus of the 2003 National Institute of Stan-
dards and Technology (NIST) Speaker Recognition Evaula-
tion (SRE) Extended Data Task (EDT). From these sources
a number of simple generalisations can be drawn. First,
significant support for the use of high-level features has
been found. Second, some useful features have been identi-
fied, but there remains potential for better feature selection
and modelling techniques to improve on the currently pro-
posed systems. Third, currently the modelling of high-level
features requires longer training utterances than acoustic
features, due primarily to the slower relative rate of indi-
vidual observations. Finally, high-level features will not
provide a replacement for acoustic features, but rather the
most promising systems appear to be those which combine
acoustic features and multiple high-level speech features.

The annual NIST SRE has recognised these trends and
based on the experience of the 2003 EDT has broadened
the scope of the evaluation in 2004 by removing the ex-
plicit boundary between acoustic speaker verification and
speaker verification using high-level features. In order to
address this change of focus QUT has expanded its acous-
tic speaker verification approach to one which incorpo-
rates a number of high-level features and paper provides an
overview of this system. Section 2. provides an overview of
the system architecture and the data sources used through-
out its development. Sections 3. through 7. describe in de-
tail each of the subsystems developed as part of the com-
bined system. Section 8. details the output fusion mecha-
nism used to combine the scores from each of the five sub-
systems and provides the results of the system testing on
the design data set.

2. System Overview
The speaker verification system developed by QUT for

the NIST 2004 SRE focused on combining acoustic and
higher level features to improve the performance of the sys-
tem in all conditions. Of particular focus was the utiliza-
tion of high-level features for situations with less training

Proceedings of the 10th Australian International Conference on Speech Science & Technology

Macquarie University, Sydney, December 8 to 10, 2004. Copyright, Australian Speech Science & Technology Association Inc.

Accepted after full paper review

PAGE 398



data then had typically been used to train high-level feature
models previously.

The system devised comprised five independent subsys-
tems along with output score fusion. The five subsystems
were identified as;

1. Acoustic Subsystem

2. Lexical Subsystem

3. Phonetic Subsystem

4. Prosodic Subsystem

5. Durational Subsystem

Each of which is described in the following sections.
The NIST 2004 SRE defined a series evaluation con-

ditions discriminated by amount of training data provided
and the length of the test utterance. The primary condi-
tion was identified as having a single conversation side for
training and testing (A single conversation side contained 5
minutes of speech including silence). In addition to the pri-
mary condition, QUT was involved in two additional con-
ditions using three and eight conversation sides for training,
respectively, and a single side for testing.

In order to develop the whole system and to ensure
meaningful and fair evaluation of its performance the mar-
shalling and use of different databases in appropriate ways
was imperative. Of key importance was the segregation of
data into subsystem specific training and development data,
fusion development and evaluation data. While subsystems
could share training and development data, this data set and
the fusion and evaluation data sets were mutually exclusive.
Table 1 sets out the different data sources and identifies
which set was used in and table 2 further describes which
data sources were used in the training and development of
each of the sub systems.

3. Acoustic Speaker Verification
The acoustic subsystem was based on the now famil-

iar Gaussian Mixture Model (GMM) with Universal Back-
ground Models (UBM) topology pioneered by Reynolds
(1997) and included handset type and test-segment nor-
malisation (HNorm and TNorm) (Auckenthaler, Carey, and
Lloyd-Thomas 2000). The unique characteristics of the
system are described in the following sections addressing
acoustic feature extraction, UBM and speaker model train-
ing and score normalisation

3.1. Feature Extraction

Prior to extracting appropriate acoustic features the ut-
terances were processed to detect speech activity. For this
the NIST SPQA package (National Institute for Standards
and Technology 1994) was utilised, as per previous NIST
SREs. The speech activity decisions were then refined fur-
ther using a energy-based detection process.

The raw acoustic features extracted from the utterances
were 12 Mel-Frequency Cepstral Coefficients (MFCC)
(Davis and Mermelstein 1980) at a rate of one observa-
tion every 10 ms. In order to increase the robustness of

the acoustic features to variations in transducers and en-
vironmental noise the raw observations were further pro-
cessed using the feature mapping (Reynolds 2003) and fea-
ture warping (Pelecanos and Sridharan 2001) techniques.

3.1.1. Feature Mapping
Feature mapping is a handset type normalisation tech-

nique which operates directly in the feature-space to reduce
the apparent mismatch of observations caused when speech
is sampled with different transducers. This normalisation
is achieved by learning a set on non-linear transforms from
known context specific feature spaces to a neutral, context
independent, feature space, and is derived directly from the
adaption of context specific GMMs from a context neutral
GMM.

Having adapted context dependent GMMs from the
context independent GMM, all future utterances are scored
against the context dependent models to identify their most
likely context, and the mapping from that context into the
neutral context in applied to all the observations from that
utterances by applying the mapping

y =
(
x− µCD

i

) (
ΣCD

i

)−1
ΣCI

i + µCI
i (1)

wherei is the index of the top scoring component in the
most likely context dependent model.

The feature mapping models were generated based on
data driven clusters produced from the Switchboard II,
phases 2 & 3 (landline) and NIST 2001 & 2002 (cellular)
data. Approximately 850 segments were used for this train-
ing, totaling almost 20hrs of speech. The data driven clus-
tering process was seeded based on the MIT handset de-
tection labels for these databases and information provided
in the Sphere headers. The observations used for cluster-
ing did not use feature warping, as feature warping is itself
designed to provide some environmental normalisation, in-
stead Cepstral Mean Substraction (CMS) was included in
the acoustic feature extractor to compensate for environ-
mental noise.

3.1.2. Feature Warping
Feature warping attempts to improve the acoustic fea-

tures robustness to channel mismatch and noise by trans-
forming the individual elements of the feature vector to
conform to a normal distibution (Pelecanos and Sridha-
ran 2001). On a observation by observation basis this is
achieved by transforming the current feature vector’s ele-
ments to their relative z-score based on their position in
a sorted list of the set of elements from the surrounding
window of the feature stream. The length of the window
used trades off the accuracy of the relative position esti-
mate against the introduced processing delay. For the ob-
servations extracted here a 5 second feature warping win-
dow was used.

3.2. UBM and Speaker Model Training

Gender dependent UBMs were trained based on the
Switchboard II, phase 2 & 3 (landline) and NIST 2001
& 2002 (cellular) data with 512 mixture components for
the single sided training condition and 1024 mixture com-
ponents for the three and eight sided training conditions.
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Subsystem Training and
Development

Fusion Development and
Evaluation

Switchboard II, phase 1 (swb2p1) X
Switchboard II, phase 2 & 3 (swb2p23) X
NIST 2001 & NIST 2002 (cellular data only) X
MIT Handset Detection Data for swb2p23 X
BYBLOS Transcripts of Switchboard II, phases 2,3 & 4 X
OGI Multi-lingual database X
NIST 2003 EDT - splits 1– 4 X

Table 1: Data sources assigned to subsystem training and development, fusion development and evaluation sets.
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Switchboard II, phase 1 (swb2p1) X
Switchboard II, phase 2 & 3 (swb2p23) X X X X
NIST 2001 & NIST 2002 (cellular data only) X
MIT Handset Detection Data for swb2p23 X
BYBLOS Transcripts of Switchboard II, phases 2,3 & 4 X
OGI Multi-lingual database X

Table 2: Data sources used in subsystem development.

The UBMs were trained with the Expectation Maximisa-
tion (EM) algorithm, initial model seeding was performed
with a vector quantisation algorithm (Pelecanos, Myers,
Sridharan, and Chandran 2000). The speaker models were
trained using iterative mean only MAP adaption with a
“relevance factor”τ = 8 (Vogt, Pelecanos, and Sridharan
2003). For efficiency the top-N component, Expected Log-
Likelihood Ratio (ELLR) method was used, with N=5 for
all conditions.

3.3. Score Normalisation

In addition to the feature mapping and feature warp-
ing of the acoustic features two output score normalisation
techniques were included; Handset Normalisation and Test
segment Normalisation (Auckenthaler, Carey, and Lloyd-
Thomas 2000).

HNorm is designed to remove the biases in a trained
speaker model’s response to differing telephone handset
types. This is achieved by measuring the response of each
speaker model to a set of impostor trials from each hand-
set context. In testing, each score is then normalised by
the mean and standard deviation of the handset context of
the trial. The contextual segments used for determining
HNorm statistics were also used to train the feature map-
ping models.

As the name suggests, TNorm compensates for varia-
tions within a test utterance such as length, noise levels and
linguistic content. In a similar fashion to HNorm, each
score is normalised based on the statistics of an impos-
tor population. These statistics are obtained through scor-
ing the test segment against a set of independently trained
impostor speaker models. For each gender and training
length combination 100 speaker models were trained on
Switchboard-II, Phase 1 data.

4. Lexical Speaker Verification
Lexical speaker verification aims to exploit the differ-

ences of speakers personal lexicon (idolect) — a concept
pioneered by Doddington (2001). To do this speaker spe-
cific n-gram models are trained from the enrollment data
and test utterances are scored against a claimants model and
a universal background.

4.1. N-gram Modelling

The likelihood estimate of a given observed n-gram,k,
is estimated from the n-gram model,m, using

lm(k) =
Cm(k)∑N

n=1 Cm(n)
(2)

whereCm(k) is the frequency counts of the n-gram token
in the training data. For a sequence of n-grams the log-
likelihood ratio of the speaker model,Θ, to the background
model,Ω, is given by

Λ =
∑

k (w(k) · log (lΘ(k)/lΩ(k)))∑
k w(k)

(3)

where the weighting function,w(k), is calculated from the
count of tokenk in the test utterance and a discounting fac-
tor, d ∈ [0, 1], from

w(k) = C(k)1−d (4)

Equation 2 represents the maximum likelihood training
criteria for then-gram model and provides reasonable esti-
mates ofn-gram likelihoods for scenarios when the train-
ing data set is large enough to approximate the observa-
tion ensemble. When enrolling individual speakers how-
ever this sets an unreasonably high requirement for training
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data. In order to reduce this data requirement the MAP esti-
mation solution for multinomial densities proposed by Lee
and Gauvain (1996) has been adapted to then-gram models
proposed by Baker, Vogt, Mason, and Sridharan (2004).

The MAP solution adapts the speaker specificn-gram
model from the backgroundn-gram model. The speaker
specific counts can be express as

C̃m(k) = Cm(k) + αCΩ(k) (5)

whereCm(k) is then-gram count from the speaker specific
training data,CΩ(k) is the background modeln-gram count
andα is the adaption relevance factor on the interval[0, 1].

4.2. Subsystem Configuration

The QUT lexical subsystem uses the fused output of
two lexical speaker verification systems; one modelling
Uni-grams and the second modelling Bi-grams. The back-
ground models were trained from the Byblos ASR tran-
scriptions of Switchboard II, Phases 2,3 & 4.

Uni-gram and Bi-gram scores were fused at the model
output level using a Multi-Layer Perceptron (MLP) in order
to produce an overall lexical score.

5. Phonetic Speaker Verification
Phonetic speaker verification exploits the personal vari-

ations in pronunciation and individuals’ tendency to vo-
calise a variety of phones in similar ways. The original pro-
posal by Andrews, Kohler, Campbell, and Godfrey (2001)
was to analyse the phone labels produced by an open-
loop speech recogniser and build ann-gram model simi-
lar to the multinomialn-gram models proposed for lexi-
cal speaker recognition by Doddington (2001). In addi-
tion to modelling the phone transcriptions produced by a
recogniser trained on the same language as the test utter-
ance, Andrews, Kohler, Campbell, Godfrey, and Hernndez-
Cordero (2002) also demonstrated that phone transcriptions
produced by recognising a test utterance in a number of
‘off’-langauge phone recognisers provided further comple-
mentary information. The process of recognising an utter-
ance using multiple recognisers is referred to as phonetic
refraction.

As with then-gram models produced by the ML train-
ing process initially proposed for lexical speaker recog-
nition, model sparsity issues required a large amount of
speaker specific data in order to be reliable. By using the
MAP adaption of speaker models from a well trained back-
ground model these data requirements can be similarly re-
duced (Baker, Vogt, Mason, and Sridharan 2004).

5.1. Subsystem Configuration

The QUT phonetic subsystem developed for NIST 2003
SRE used MAP adapted tri-gram modelling of phone se-
quences from six languages. The Open-Loop Phone Recog-
nisers (OLPR) used to produce the streams were trained
on the OGI multi-lingual database and the six languages
used were English, German, Hindi, Japanese, Mandarin
and Spanish.

The background tri-gram model was trained on the
Switchboard II, Phases 2 & 3 corpus and speaker spe-
cific models were MAP adapted using a relevance factor

α = 0.01. The tri-gram model scores for each language
were fused, using an MLP, at the output level to produce an
overall phonetic score.

6. Prosodic Speaker Verification
Prosodic speaker verification exploits interpersonal

variations in pitch and volume patterns to discriminate be-
tween speakers. The prosodic speaker verification subsys-
tem implemented by QUT for the NIST 2004 SRE was mo-
tivated by the successful prosodic features and modelling
techniques proposed by Adami and Hermansky (2003).

The prosodic features are estimated by representing the
pitch contour of an utterance as a series of straight line
segments and identifying each of these segments as sin-
gle prosodic event. Each event can then be characterised
in terms of the slope of the pitch contour, the slope of the
associated energy contour and by its duration. Unvoiced
events are quantised simply in terms of their duration.

As with the lexical and phonetic modelling techniques
it is possible to model then-gram distributions of these
prosodic features to produce a background model and in-
dividual speaker models. The system presented here used
bi-gram models and trained the background models on the
data from Switchboard II, Phases 2 & 3. Unlike the lexical
and phonetic model the use of higher order MAP adapted
speaker models did not provide any performance improve-
ment over the ML estimated models produced directly from
the speaker enrollment data.

7. Durational Speaker Verification
The durational speaker verification system presented

here was designed to discriminate speakers based of the
variation present in the rate with which individuals produce
different phones and is based on the system proposed by
Kajarekar, Ferrer, Venkataraman, Sonmez, Shriberg, Stol-
cke, Bratt, and Gadde (2003).

The durational features of interest were estimated by
quantising the state occupancy durations of three state
HMM phone recognition transcripts (Kajarekar, Ferrer,
Venkataraman, Sonmez, Shriberg, Stolcke, Bratt, and
Gadde 2003). Speaker specific histogram models of
these features were MAP adapted from background models
trained using the QUT OLPR transcripts of Switchboard II,
Phase 2 & 3.

8. Output Fusion
The output scores from the five subsystems were com-

bined to produce a single verification decision by a multi-
layer perceptron (MLP) trained using the LNKnet software
package (MIT Lincoln Laboratory 1994). A separate MLP
was trained for each of the three evaluation conditions.

In addition to the five subsystem output scores, which
were normalised for mean and standard deviation, a sixth
input, representing the gender of the target, was used for
fusion.

A k-fold training and validation process was used dur-
ing the development of the MLPs and the output class priors
weighted to account for the bias in expected evaluation con-
ditions. Splits 1-4 of the NIST2003 SRE EDT were used to
train the fusion.
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Figure 1: DET for single sided training condition.

9. Results and Discussion
Table 3 summarises the EERs and the minimum De-

tection Cost Function (DCF) values for the individual and
fused scores and figures 1–3 depict the DET curves of the
systems. From these results we can see that the fused sys-
tems achieved relative EER improvements of between 28%
(single sided training) to 43% when using eight conversa-
tion sides for training. The improvements in minimum DCF
were even more impressive ranging from 26% to 65% —
this is highlighted in figure 4.

Figure 5 depicts the system performances of the acous-
tic only systems, systems based on the fusion of high-level
features only and the full fusion of acoustic and high-level
features. From the graph the effect of using high-level fea-
tures can be considered in terms of training data require-
ments. By comparing the performance of the eight sided
high-level system to the single sided acoustic system it can
be seen that high-level features require much more training
data then acoustic features to perform at comparable EER.

More positively though we can compare the perfor-
mance of the eight sided acoustic system to the three sided
fully fused system and can see that the fusion has pro-
vided us with approximately equivalent performance with
less then half the data requirement.

10. Conclusion
This paper has presented a description of the QUT

speaker verification system as it was developed for the
NIST 2004 SRE. From the development data the perfor-
mance of the system showed a relative improvement of 26%
over the purely acoustic performance when using only a
single conversation side for training.

The fused system trained with three conversation sides
performed at approximately the same level as an acoustic
system trained with eight sides, supporting the claim that
the fusion of high-level features and acoustic features can
provide true reductions in the training data requirements of
speaker verification systems.
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Figure 2: DET for three sided training condition.
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Figure 3: DET for eight sided training condition.
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Figure 4: Relative minimum DCF values for the one, three
and eight sided acoustic and fused systems.
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1conv 3conv 8conv
DCF EER DCF EER DCF EER

Acoustic 0.0274 0.0878 0.0147 0.0376 0.0103 0.0254
Lexical 0.0856 0.2617 0.0689 0.1702 0.0519 0.1144
Phonetic 0.0891 0.2775 0.0766 0.1968 0.0653 0.1480
Prosodic 0.0991 0.2726 0.0966 0.2244 0.0933 0.2057
Durational 0.0973 0.3076 0.0888 0.2344 0.0793 0.1847
Fused 0.0202 0.0634 0.0075 0.0255 0.0036 0.0145

Table 3: Individual subsystem and fused overall system performance
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Figure 5: DET for one, three and eight sided training condi-
tions, comparing the acoustic only system, the fused high-
level features and the fusion of all features.
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