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Abstract
Using visual information, such as lip shapes and movements, as the secondary source of speech
information has been shown to make speech recognition systems more robust to problems asso-
ciated with environmental noise, training/testing mismatch and channel and speech style vari-
ations. Research into utilising visual information for speech recognition has been ongoing for
20 years, however over this period, a study into which visual information is the most useful or
pertinent to improving speech recognition systems has yet to be performed. This paper presents
a study to determine the confusability of the phonemes grouped into their viseme classes over
various levels of noise in the audio domain. The rationale behind this approach is that by
establishing the interclass confusion for a group of phonemes in their viseme class, a better
understanding can be obtained on the complementary nature of the separate audio and visual
information sources and this can be subsequently applied in the fusion stagauwafiarvisual
speech processin@VSP) system. The experiments performed show high interclass confusion
variability at the 0dB and -6dB SNR levels. Further analysis found that this was mainly due to
a phonetic imbalance in the dataset. Due to this result, it was suggested that it would be ap-
propriate for an AVSP system used for digit recognition applications heavily weight the visual
modality for the phonemes that are most prevalent such as the phdheme

1. Introduction tion arising in audio features (i.e audio noise does not affect

the video information), fusion of the two sources of infor-

Traditionally, speech processing has been thought of ahation should intuitively r.e'sult in improvement in perfqr-
mance of speech recognition systems. Many applications

a single sense input in the auditory domain. As a conse ) o :
quence, the majority of the past research on speech prc§_uch as human-computer interaction; hands-off operation

cessing has been strictly confined to the audio modalityf).f equipment (photocopiers, vehicles, m_ilitgry aircraft etc.);
However, the performance of acoustic-based speech prﬁgeo .conferencmg; and speech transcription WOL_lId greatly
cessing systems has yet to reach the level required for theff it from the use of an AVSP syste@hibelushi, Der-

to be used for the vast majority of conceivable applications?‘v" and Mason 2002
This is mainly due to the fact that current acoustic-based Research on the topic of AVSP has been ongoing for 20
systems are quite susceptible to environmental noise, trairyears, with the first work appearing under the heading of
ing/testing mismatch and channel and speech style varidiP reading in 1984Retajan 1984 AVSP has been shown
tions [Potamianos, Neti, Luettin, and Matthews 2pods- 10 improve ASR systems over this period but the extent to
ing visual information, such as lip shapes and movementgVhich visual information contributes to this improvement
as the secondary source of speech information has bedl@s et to be explored. The lack of research into this area
shown to make speech processing systems more robust f&s motivated the work for this paper.

these problems. The field of speech processing which uses The basic unit of acoustic speech is calledpgheneme
both audible and visible speech cues is knowraagio- (Rabiner 1989 which is the theoretical unit for describ-
visual speech processitigvSP). ing the linguistic meaning of speech. Phonemes have the

One of the aims of researching AVSP is to emulate theProperty thatif one is replaced by another one, the meaning
ways in which humans jointly use audio-visual information Of the utterance is changed. Similarly, in the visual do-
for speech communication. It is believed that computergnain, the basic unit of mouth movements is calledseme
can make effective use of the joint audio-visual informa-(Chen 1993 A generic facial image or lip shape is associ-
tion for tasks such as speech recognition. sAgomatic ated with a viseme in order to represent a particular sound.
Speech recognitiomSR) promises to be an integra| part StrlCtly Speaking, instead of a still image, a viseme can be
of the future human-computer interfad@otamianos, Neti, @ sequence of several images that capture the movements
Gravier, Garg, and Senior 2003AVSP can increase the Of the mouth. However, most visemes can be approximated
accuracy of ASR systems, and aid processes such as oy stationary imageddhen 1993
of vocabulary rejection and key word spotting as well as  In this paper, a study was conducted to determine
alleviating the problems described previously. Since thehe confusability of phonemes grouped into their viseme
visual (video) features are robust to the mismatched condielasses when subjected to various levels of noise in the au-
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dio domain. The rationale behind this approach was that 2. Phoneme to Viseme Mapping
if it could be determined that a certain group of phonemes  For English, the ARPABET table, consisting of 48
in their viseme class were more or less easily recogniseghonemes, is commonly used to classify phoneris (
then others, then more emphasis or appropriate weightinginer and Juang 1993However, currently there is no stan-
could be assigned to those phonemes in the audio-visuglard viseme table used by all researchers. As a result, a
fusion stage of the AVSP system. Take, for example, th§jiseme table for this study was based on the work per-
phoneme! andN. Acoustically these phonemes are easily formed by Lee and Sook (2002). This was used in collating
confused, however, in the visual domain, these two soundg aple which effectively mapped all the possible phonemes
look quite different. This is a good example of the useful-15 visemes. This is given in Table This table shows
ness of the visual modality when trying to recognise acoustne typical 48 phonemes used in English language includ-

provides complementary information which allows a sys-g|asses.

tem to recognise these sounds with more accuracy due to

the extra information source. . :
Table 1:Phoneme to viseme mapping

If a phoneme had high or low confusion with other
phonemes in the same viseme class (intraclass confusion) K
in the auditory domain, there would be no real need to use Ipl G
visual information as these sounds look the same in the vi- M N
sual domain and thus does not provide any complementary M L K/
or useful information about those sounds. However, if a = il NX
phoneme were to be confused with another phoneme which V; AA
was in a different viseme class (interclass confusion), then T Y
visual information would be complementary to the infor- D EL

S
VA

Phoneme | Viseme | Phoneme | Viseme

| T

m

mation in the audio domain. This is because these sounds
. - . . L . It/ EN
look different in the visual domain. As obtaining the vi-

sual information from a speaker’s lip is computationally H ::' iyl
expensive and requires vast amounts of memory, knowing DH AA Taal
which sounds require visual information has the potential to DX AH

greatly save the amount of memory necessary for an AVSP W AX Jah/
system as well as improving the speed of the system. The WH W/ AY

main aim of this study was to determine the intraclass and R ER Ter]
interclass confusion of the phonemes in the audio domain CH 20

under different noisy environments so as to give a better IH Ich/ oY
understanding on what type of visual information would be SH X

useful in an AVSP system. As a result of this study, it is 7H OW

hoped that weights can be assigned to specific phonemes EH UH Tuh/
and visemes according to the visual and audio stream relia- EY eyl OW

bilities in the fusion stage. This type of fusion is known as AE SIC spl
adaptive fusion It is hoped that the novel adaptive fusion AW Sp

method mentioned in this paper will help improve speech
recognition results. This study is in contrast to most of the .
work performed on adaptive fusion in AVSP, which has ba-  AS ¢an be seen from Takil¢ many acoustic sounds are
sically concerned itself with assigning weights to either thevisually ambiguous, and accordingly different phonemes
entire acoustic or visual domain depending on how reliablé@n be classed using the same viseme. There is therefore
the audio signal is by estimating the the audio signal-to2 Many-to-one mapping between phonemes and visemes.
noise ratio (SNR)Kleckmann, Berthommier, and Kroschel BY the same token there are many visemes that are acous-

2002 Glotin, Vergyri, Neti, Potamianos, and Luettin 2Qo1  tically ambiguous. An example of this can be seen in the
acoustic domain when people spell words on the telephone,

The rest of this paper is organised as follows. In Secexpressions such as ‘B as in boy’ or ‘D as in David’ are
tion 2, a description of how the phonemes are mapped intoften used to clarify such acoustic confusion. These con-
their viseme counterparts is given. Section 3 details thdéusion sets in the auditory modality are usually distinguish-
CUAVE audio-visual database that was used in the experiable in the visual modalityGhen 200). This highlights
ments. This section also documents how the confusabilityhe bimodal nature of speech and the fact that to properly
of the phonemes based on their visemes classes were founthderstand what is being said, information is required from
Section 4 gives the results from the experiments and alsboth modalities. The extra information contained in the vi-
discusses their relevance. Finally, Section 5 closes witlsual modality can be used to improve standard speech pro-
some observations on the intraclass and interclass confeessing applications such as speech recognition. The bi-
sions that were found from this study and also suggests theodal nature of speech is also illustrated by the McGurk
possible areas of research that this particular study migteffect McGurk and MacDonald 1976 The McGurk ef-
lead to. fect shows that when humans are presented with conflict-
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ing acoustic and visual stimuli, the perceived sound may_I_ ble 2:Ph 0 Vi ina for diait i
not exist in either modality. For example, when a person aple z:Fhoneme to viseme mapping for digit recognition

hears the sound /ba/, but watches the sound /ga/, the per- Phoneme | Viseme
son may not perceive either /ba/ or /ga/ but may perceive F i
/da/.The McGurk effect highlights the requirement for both VvV
acoustic and visual cues in the perception of speech. T
S 1t/
3. Experimental Setup z
TH
3.1. Training and Test Datasets V%/ Iwi
Training and evaluation speech was taken from the K Ikl

Clemson UniversityCUAVE, audio-visual databas®&t* N
terson, Gurbuz, Tufekci, and Gowdy 2()02Zr’he CUAVE Y liyl
database was selected as it is presently the only common IH
audio-visual database which is available for all universities EH leh/
to use. This is important for benchmarking and comparison EY
purposes. Even though the XM2VTS databelBregser, AH Jah/
Matas, Kittler, Luettin, and Maitre 1999s also another AY
database which is available to researchers for the same pur- AO Jao/
poses, the CUAVE database was chosen due to the fact OW
it is freely available. The CUAVE database consists of Uw Juh/
two major sections, one of individual speakers and one of SIL Ispl
speakers pairs. For this study, only the individual speakers Sp

were used. The part with individual speakers consists of 36
speakers, 19 male and 17 female.

Even though the audio modality was only used in e clean speech
this study, it was deemed important to use a audio-visual
database as the intention is to use these results in a future® 18dB
study using an AVSP system. Due to the difficulties associ-
ated with the high volumes of data necessary for simultane- ® 12d8
ous video audio, the creation of audio-visual databases has ; g4
been limited. As a result, the CUAVE database is a speaker-
independent corpus of over 7 000 utterances of only con- ¢ 0dB
nected and isolated digits (0-9).

As connected and isolated digits were the only words
spoken, the phoneme to viseme mapping was a subset of the
entire set given in Tabl& From the original 48 phonemes The phoneme/viseme recogniser was trained on clean
and 14 visemes, only 22 phonemes and 10 visemes wef@eech and tested under noisy conditions.
required. The simplified mapping is shown in TaBle

-6dB

_ 3.2. Phoneme Recognition based on Viseme Classes
Each speaker in the CUAVE database was recorded For this study, determining the confusability of the

speaking digits in several different styles. Initially, 100 honemes grouped by their viseme classes was essentially
isolated digits were spoken. 60 connected digits includingg viseme recognition problem. This is due to the fact

telephone-number-like sequences were then spoken. T.Qﬁat the intraclass and interclass confusions based on the

datqbgse was recorded in an isolated sound booth, USiRgseme classes were the results that were required for anal-
a MiniDV camera. Several microphones were tested. A

. h duced the b s audi sis. The viseme recogniser used was based on a phoneme
on camera microphone produce t € est results: au r%cogniser. In this approach, the audio signals were coded
that was clear from clicking or popping due to speakerimo a sequence of phonemes. The phoneme sequence was
movement and video where the microphone did not bloc'?napped to a viseme sequence using Tol&he diagram

the view of the speake|Patterson, Gurbuz, Tuiekci, dnd of this approach is illustrated in Figute In Figurel, it can

Gowdy 2003. From the recordipgs, only d_isruptive MiS- pe seen that the phonemes are modelled as Hidden Markov
takes were removed, but occasional vocalised pauses a dels (HMMSs)
mistakes in speech were kept for realistic test purposes. An HMM is éstochastic model. into which some tem-

The training and test data sets used for this study wer oral restrictions can be incorporated. It can be used to

based on the CUAVE database specification. 30 Subjects Qc 1y re the acoustic characteristic of a speech sound. An

taIIing_ 1.25 hour_s of audio data were used for training anq_”v”vI can be considered as a special case of the Bayesian
6 subjects totalling 0.25 hours were used for testing. Ad'classifier, where the most probable token sequénder

ditive Gaussian noise was addgd to the test data at Va”mdﬁven speechX is selected among all possible token se-
SNR levels. These levels were: quenced/* as follows:

Proceedings of the 10th Australian International Conference on Speech Science & Technology
Macquarie University, Sydney, December 8 to 10, 2004. Copyright, Australian Speech Science & Technology Association Inc.

Accepted after full paper review



PAGE 268

Audio Signals Table 3: Intraclass recognition rates (%) of phonemes
grouped according to their viseme classes over various lev-
els of noise

Viseme | clean | 18dB | 12dB | 6dB | 0dB | -6dB

Feature Extraction

lah/ 956 | 978 | 97.8 | 97.6 | 88.7| 324

l faol/ 96.2 96.7 | 95.9 | 80.5| 55.3 | 37.0
o Jeh/ | 97.4 | 97.3 | 96.2 | 87.6 | 62.9 | 15.1
Training Speech Phoneme HMMs

Data Ifl 975 | 972 | 97.8 | 926 | 60.9| 33.3
l liyl 98.7 98,5 | 975 | 92.7 | 60.7 | 18.0
Phoneme to Viseme K/ 97.0 | 96.3 | 96.9 | 95.8 | 87.3| 48.0

Lookup Table
ik 99.1 98.9 | 95.0 | 86.0 | 56.9 | 35.0
l /uh/ 97.8 95.6 97.8 | 944 | 354 | 17.7

Viseme

Recognition Iwi 93.7 944 | 929 | 81.7| 69.9 | 33.6

Isp/ 93.9 | 944 | 943 | 95.8 | 96.8 | 100.0

Figure 1: A viseme recognition system using phoneme
HMMs

the Wall Street Journal (WSJ) databa&aKer and Paul
. 1992). This was done as the WSJ database had much more
U=arg K P(UIX) (1) data than the CUAVE database (nearly 80 hours compared
to 1 hour). This resulted in far superior results than the flat-
S o _start phone models that were obtained using the CUAVE
One of the distinguishing characteristics of speech igj5tapase.

that it is dynamic. Even within a small segment such as g regyits from the viseme recogniser over the various
a phoneme, the speech sound changes gradually. The Pligye|s of noise are shown in Tatz From this table it can
vious phones affect t.he beglnnlng of a phone, the mlqdl%e seen that the recognition rates for all the visemes were
portion of the phone is relatively stable, and the fo_IIowmg very high, especially at the clean speech, 18dB and 12dB
phones affect the end of the phone. The temporal informag,,e|s ‘which suggests low interclass confusion. The re-
tion of speech feature vectors plays an important role in thg ;s at a SNR of 6dB also gave relatively good recognition
recognition process. In order to capture the dynamic charraies However, at the 0dB and -6dB SNR levels, the recog-
acteristics of speech within the framework of the Bayesian,jtion, rates had high variability across the viseme classes.

classifier, certain temporal resrictions should be imposedryg 5ggests that there was high interclass confusion most
A5 state left to right HMM is sometimes used for this pur- ey due to the excessive noise levels present in the audio
pose 6. Lee and D. Yook 20()2 This model architecture signal.

was used for this study. Looking at the intraclass confusion matrix of the
- phonemes grouped according to their visemes at 0dB in Ta-
4. Phoneme Confusability Results ble4, it can be seen that there is variability in the interclass
The data used in these experiments were parameterisednfusion of the viseme classes. For the viseme classes
using Perceptual Linear Prediction (PLP) coefficient fea/ah/ and /k/, the phonemes in these classes exhibit low in-
ture extraction. Each feature vector used for the experiterclass confusion. It would appear on the surface, that
ments was composed of 12 dimensional PLPs, normalisethe phonemes in these classes would require little visual
energy, and their first and second order time derivatives, renformation as no extra information would be introduced
sulting in a 39 dimensional vector. It was computed everyfrom the visual modality as these phonemes look the same.
10 milliseconds using 25 milliseconds long Hamming win- However, upon further investigation, the phonemes in these
dowed speech signals. The HMMs were trained using 7 00@roups did not share the same commonalities, i.e. the intr-
utterances from the CUAVE training data. For the phonemeclass recognition rates were greatly varied. For example,
recogniser, 22 HMMs including silence models are createdhe viseme class /k/, is made up of the phoneMendK.
during training. All HMMs were modelled using 5 state The phoneme recognition rate Nfwas 85.2% which was
left-to-right HMM with 8 Mixtures per state. As the train- similar to the recognition rate for its corresponding viseme
ing data from the CUAVE database was relatively small,class. However the phor€ only had a recognition rate of
these models were re-estimated using phone models fro@4%, which is vastly different. Yet when these rates were
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ble 5: Intraclass confusion matrix at -6dB, showing the
ercentage of the phonemes in their viseme classes ver-
tically being identified as phonemes within the viseme
8Iasses on the horizontal

was achieved. This was because there was approximate
15 times the examples for the phonehhattered in the test

set tharK, which introduced massive bias into the results.
This was observed to be a common trend throughout th

merged into their viseme class, a very high recognition ratey
I

result obtained. Tahi] Jaol] lehl[ /i | iyl | Ik | 17 | Juhf] i | Ispl
. . . /ah/| 32.4 - - - - - - - - 67.6
Table 4: Intraclass confusion matrix at 0dB, showing the
percentage of the phonemes in their viseme classes veTiao/ 251 37.0 - - - 58.8 08| 0.8 - -
tically being identified as phonemes within the visemeg
classes on the horizontal leh/ 1.9] 5.7| 15.1 - - 35.8 - - 1.9 39.6
lah/| /aol| lehl| [fI | fiyl | Ikl | it/ | luh/| twi | Isp/
ffl | 1.3] 1.3 - 33.3 - 38.7 - - 0.7 | 24.1
/ah/| 88.7 3.2 - - 16| - 16| 16| - 3.2
fiy/ | 22| 1.3| 1.8| 0.9| 18.0 25.0 - 04| - 50.4
/ao/| 10.1 55.3 - 13| - 27.0 - 50| 0.6 -
K| - 05] - 0.5] - 98.0 - 0.2 02| 05
lehl| - 11.3 62.9 - 8.2| 10.3 - 31|41 -
it | 26| 3.0| - 34| 04| 37.2 35.0 1.7| 1.3| 154
Ifl | 24]6.8| 04| 60.6 - 124 - 20| 141 1.2
/uh/ 3.2| 65| 1.6| 4.8| 3.2| 59.7 - 17.7 3.2 | -
fiy| 20| 6.1| 0.3| 0.3| 60.7 22.0 0.3| 44| 1.0| 2.7
wl | - 09| - 0.9 - 16.8 - 19| 33.6 45.8
Ikl | 1.4] 43| 05| 3.3] - 87.3 03| 11| 19] -
fspll - |- |- [- |- |- [- |- |- [100
It ] 07] 36| - 6.2| 1.1| 234 56.9 22| 22| 3.6
luh/| - 24 - - - 61.0 1.2 | 354 - - . . . .
Another interesting result stemming from the experi-
Wil 411 101 - |20/ 05 7.7 - | 143 699 05| Mments performed in this work showed that when the noise
level is extreme (i.e. < -6dB), a significant proportion
Isp/| 0.6] 0.2] - 0.2] - 1.4 01| 05] 0.1] 96.8 of phonemes are confused with silences and short pauses.
This can be seen in Tablk: Upon reflection, this result

is quite intuitive, as in very noisy environments it is quite

This problem highlights a major problem in AVSP. difficult to decipher what sound is being made, so people
As audio-visual databases require vast amounts of dat®0k to visual modality for complementary information.
to accommodate both audio and video modalities, thes@his is backed up by Heckmann et al's (2002) work, as
databases have been only available for small vocabular§? their study they found at the -6dB SNR level, 75% of
tasks such as digit recognition. The problem of databasei€ pPhonemes got confused with silences and short pauses.
which are designed for isolated and connected digit recogtiowever, in the visual domain only 22% of the visemes had
nition, are that they are not phonetically balanced like theP€en confused with these pauses.
TIMIT database lIST Speech Disc 1-1.1 1990i.e. it .
does not have equal representation of all phonemes spo- 5. Conclusions
ken therefore introducing bias as seen in this study. At AVSP is becoming a very important area of research
the present stage, there is currently only one phoneticallgs it has the potential to make speech recognition systems
balanced audio-visual database and it is designed for largeactable for real-world applications. In this paper, the re-
vocabulary continuous speech recognition. This databassults for a study conducted to determine the confusability
is produced by IBMNeti, Potamianos, Luettin, Matthews, of the phonemes grouped into their visemes classes over
Glotin, and Vergyri 200%, but is not commercially avail- various levels of noise were shown. The results showed
able. that there was low interclass confusion of the phonemes in

Also at the 0dB SNR ratio, the viseme class /uh/ hadtheir viseme classes at the clean speech, 18dB and 12dB
high confusability with a recognition rate of 35.4%. But levels SNR levels. The results at 6dB were also quite good.
looking at Tabled, it can be seen that there was high inter- At the 0dB and -6dB level, the results displayed that there
class confusability with viseme /k/, with the phonemes inwas high variability in the amount of interclass confusion
/uh/ being confused with the phonemes in /k/ over 60% ofacross some of the viseme classes. Upon further investiga-
the time. This can also be attributed to the dataset problertion it was shown that the confusion was due to the dataset
as there is 4 times as much data for the phonemes in theeing not phonetically balanced with some phonemes being
viseme class /k/ compared to the phonemes which were iattered almost 15 times more than other phonemes.

the viseme class /uh/. As can be seen in Tdbliis type Due to this dataset inequality, it would be advisable for
of interclass confusion was present for the majority of thean AVSP system being implemented for a digit recogni-
other viseme classes. tion application to pay particular attention to the phonemes
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which were being uttered the most. This is due to the fact
that these particular phonemes are the sounds being uttered
the most by a considerable factor. If obtaining and using
the visual information of a speaker’s lip proves to be too
computationally expensive to implement in a digit recogni-
tion application, just using the visual information on these
phonemes, may be a worthwhile exercise. For example, in
this study, it was found that the phoneevas uttered ap-
proximately 15 times more than the other phonemes. Just
having an AVSP system focus on this particular phoneme
may improve the recognition rate when comparing it to a
ASR system.

Also at these very noisy audio levels, it would also be
wise to have an AVSP system able to segment speech effec-
tively due to the amount of phonemes being confused with
silences and short pauses. As visual speech not only gives
information about speech itself, it also gives segmentation
information. In future work, it is hoped to use the visual
information to select non-speech segments for SNR esti-
mation in the audio channel to help in assigning weights to
the various phonemes in an AVSP system. Itis also planned
to continue this study, but this time, we intend to study the
confusability of visemes in the visual domain. Also it is in-
tended that we study the confusability of phonemes accord-
ing to their viseme classes on a large vocabulary continuous
speech recognition audio-visual database.
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