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Abstract
Using visual information, such as lip shapes and movements, as the secondary source of speech
information has been shown to make speech recognition systems more robust to problems asso-
ciated with environmental noise, training/testing mismatch and channel and speech style vari-
ations. Research into utilising visual information for speech recognition has been ongoing for
20 years, however over this period, a study into which visual information is the most useful or
pertinent to improving speech recognition systems has yet to be performed. This paper presents
a study to determine the confusability of the phonemes grouped into their viseme classes over
various levels of noise in the audio domain. The rationale behind this approach is that by
establishing the interclass confusion for a group of phonemes in their viseme class, a better
understanding can be obtained on the complementary nature of the separate audio and visual
information sources and this can be subsequently applied in the fusion stage of anaudio-visual
speech processing(AVSP) system. The experiments performed show high interclass confusion
variability at the 0dB and -6dB SNR levels. Further analysis found that this was mainly due to
a phonetic imbalance in the dataset. Due to this result, it was suggested that it would be ap-
propriate for an AVSP system used for digit recognition applications heavily weight the visual
modality for the phonemes that are most prevalent such as the phonemeN.

1. Introduction

Traditionally, speech processing has been thought of as
a single sense input in the auditory domain. As a conse-
quence, the majority of the past research on speech pro-
cessing has been strictly confined to the audio modality.
However, the performance of acoustic-based speech pro-
cessing systems has yet to reach the level required for them
to be used for the vast majority of conceivable applications.
This is mainly due to the fact that current acoustic-based
systems are quite susceptible to environmental noise, train-
ing/testing mismatch and channel and speech style varia-
tions (Potamianos, Neti, Luettin, and Matthews 2004). Us-
ing visual information, such as lip shapes and movements,
as the secondary source of speech information has been
shown to make speech processing systems more robust to
these problems. The field of speech processing which uses
both audible and visible speech cues is known asaudio-
visual speech processing(AVSP).

One of the aims of researching AVSP is to emulate the
ways in which humans jointly use audio-visual information
for speech communication. It is believed that computers
can make effective use of the joint audio-visual informa-
tion for tasks such as speech recognition. Asautomatic
speech recognition(ASR) promises to be an integral part
of the future human-computer interface (Potamianos, Neti,
Gravier, Garg, and Senior 2003), AVSP can increase the
accuracy of ASR systems, and aid processes such as out
of vocabulary rejection and key word spotting as well as
alleviating the problems described previously. Since the
visual (video) features are robust to the mismatched condi-

tion arising in audio features (i.e audio noise does not affect
the video information), fusion of the two sources of infor-
mation should intuitively result in improvement in perfor-
mance of speech recognition systems. Many applications
such as human-computer interaction; hands-off operation
of equipment (photocopiers, vehicles, military aircraft etc.);
video conferencing; and speech transcription would greatly
benefit from the use of an AVSP system (Chibelushi, Der-
avi, and Mason 2002).

Research on the topic of AVSP has been ongoing for 20
years, with the first work appearing under the heading of
lip reading in 1984 (Petajan 1984). AVSP has been shown
to improve ASR systems over this period but the extent to
which visual information contributes to this improvement
has yet to be explored. The lack of research into this area
has motivated the work for this paper.

The basic unit of acoustic speech is called thephoneme
(Rabiner 1989), which is the theoretical unit for describ-
ing the linguistic meaning of speech. Phonemes have the
property that if one is replaced by another one, the meaning
of the utterance is changed. Similarly, in the visual do-
main, the basic unit of mouth movements is called aviseme
(Chen 1998). A generic facial image or lip shape is associ-
ated with a viseme in order to represent a particular sound.
Strictly speaking, instead of a still image, a viseme can be
a sequence of several images that capture the movements
of the mouth. However, most visemes can be approximated
by stationary images (Chen 1998).

In this paper, a study was conducted to determine
the confusability of phonemes grouped into their viseme
classes when subjected to various levels of noise in the au-
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dio domain. The rationale behind this approach was that
if it could be determined that a certain group of phonemes
in their viseme class were more or less easily recognised
then others, then more emphasis or appropriate weighting
could be assigned to those phonemes in the audio-visual
fusion stage of the AVSP system. Take, for example, the
phonemesM andN. Acoustically these phonemes are easily
confused, however, in the visual domain, these two sounds
look quite different. This is a good example of the useful-
ness of the visual modality when trying to recognise acous-
tically confused sounds. This is because the visual modality
provides complementary information which allows a sys-
tem to recognise these sounds with more accuracy due to
the extra information source.

If a phoneme had high or low confusion with other
phonemes in the same viseme class (intraclass confusion)
in the auditory domain, there would be no real need to use
visual information as these sounds look the same in the vi-
sual domain and thus does not provide any complementary
or useful information about those sounds. However, if a
phoneme were to be confused with another phoneme which
was in a different viseme class (interclass confusion), then
visual information would be complementary to the infor-
mation in the audio domain. This is because these sounds
look different in the visual domain. As obtaining the vi-
sual information from a speaker’s lip is computationally
expensive and requires vast amounts of memory, knowing
which sounds require visual information has the potential to
greatly save the amount of memory necessary for an AVSP
system as well as improving the speed of the system. The
main aim of this study was to determine the intraclass and
interclass confusion of the phonemes in the audio domain
under different noisy environments so as to give a better
understanding on what type of visual information would be
useful in an AVSP system. As a result of this study, it is
hoped that weights can be assigned to specific phonemes
and visemes according to the visual and audio stream relia-
bilities in the fusion stage. This type of fusion is known as
adaptive fusion. It is hoped that the novel adaptive fusion
method mentioned in this paper will help improve speech
recognition results. This study is in contrast to most of the
work performed on adaptive fusion in AVSP, which has ba-
sically concerned itself with assigning weights to either the
entire acoustic or visual domain depending on how reliable
the audio signal is by estimating the the audio signal-to-
noise ratio (SNR) (Heckmann, Berthommier, and Kroschel
2002; Glotin, Vergyri, Neti, Potamianos, and Luettin 2001).

The rest of this paper is organised as follows. In Sec-
tion 2, a description of how the phonemes are mapped into
their viseme counterparts is given. Section 3 details the
CUAVE audio-visual database that was used in the experi-
ments. This section also documents how the confusability
of the phonemes based on their visemes classes were found.
Section 4 gives the results from the experiments and also
discusses their relevance. Finally, Section 5 closes with
some observations on the intraclass and interclass confu-
sions that were found from this study and also suggests the
possible areas of research that this particular study might
lead to.

2. Phoneme to Viseme Mapping
For English, the ARPABET table, consisting of 48

phonemes, is commonly used to classify phonemes (Ra-
biner and Juang 1993). However, currently there is no stan-
dard viseme table used by all researchers. As a result, a
viseme table for this study was based on the work per-
formed by Lee and Sook (2002). This was used in collating
a table which effectively mapped all the possible phonemes
to visemes. This is given in Table1. This table shows
the typical 48 phonemes used in English language includ-
ing silence and short pauses, grouped into their 14 viseme
classes.

Table 1:Phoneme to viseme mapping

Phoneme Viseme Phoneme Viseme
P K
B /p/ G
M N

EM L /k/
F /f/ NX
V HH
T Y
D EL
S /t/ EN
Z IY /iy/

TH IH
DH AA /aa/
DX AH
W AX /ah/

WH /w/ AY
R ER /er/

CH AO
JH /ch/ OY
SH IX
ZH OW
EH UH /uh/
EY /ey/ UW
AE SIL /sp/
AW SP

As can be seen from Table1, many acoustic sounds are
visually ambiguous, and accordingly different phonemes
can be classed using the same viseme. There is therefore
a many-to-one mapping between phonemes and visemes.
By the same token there are many visemes that are acous-
tically ambiguous. An example of this can be seen in the
acoustic domain when people spell words on the telephone,
expressions such as ‘B as in boy’ or ‘D as in David’ are
often used to clarify such acoustic confusion. These con-
fusion sets in the auditory modality are usually distinguish-
able in the visual modality (Chen 2001). This highlights
the bimodal nature of speech and the fact that to properly
understand what is being said, information is required from
both modalities. The extra information contained in the vi-
sual modality can be used to improve standard speech pro-
cessing applications such as speech recognition. The bi-
modal nature of speech is also illustrated by the McGurk
effect (McGurk and MacDonald 1976). The McGurk ef-
fect shows that when humans are presented with conflict-
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ing acoustic and visual stimuli, the perceived sound may
not exist in either modality. For example, when a person
hears the sound /ba/, but watches the sound /ga/, the per-
son may not perceive either /ba/ or /ga/ but may perceive
/da/.The McGurk effect highlights the requirement for both
acoustic and visual cues in the perception of speech.

3. Experimental Setup

3.1. Training and Test Datasets

Training and evaluation speech was taken from the
Clemson University,CUAVE, audio-visual database (Pat-
terson, Gurbuz, Tufekci, and Gowdy 2002). The CUAVE
database was selected as it is presently the only common
audio-visual database which is available for all universities
to use. This is important for benchmarking and comparison
purposes. Even though the XM2VTS database (Messer,
Matas, Kittler, Luettin, and Maitre 1999) is also another
database which is available to researchers for the same pur-
poses, the CUAVE database was chosen due to the fact
it is freely available. The CUAVE database consists of
two major sections, one of individual speakers and one of
speakers pairs. For this study, only the individual speakers
were used. The part with individual speakers consists of 36
speakers, 19 male and 17 female.

Even though the audio modality was only used in
this study, it was deemed important to use a audio-visual
database as the intention is to use these results in a future
study using an AVSP system. Due to the difficulties associ-
ated with the high volumes of data necessary for simultane-
ous video audio, the creation of audio-visual databases has
been limited. As a result, the CUAVE database is a speaker-
independent corpus of over 7 000 utterances of only con-
nected and isolated digits (0-9).

As connected and isolated digits were the only words
spoken, the phoneme to viseme mapping was a subset of the
entire set given in Table1. From the original 48 phonemes
and 14 visemes, only 22 phonemes and 10 visemes were
required. The simplified mapping is shown in Table2.

Each speaker in the CUAVE database was recorded
speaking digits in several different styles. Initially, 100
isolated digits were spoken. 60 connected digits including
telephone-number-like sequences were then spoken. The
database was recorded in an isolated sound booth, using
a MiniDV camera. Several microphones were tested. An
on camera microphone produced the best results: audio
that was clear from clicking or popping due to speaker
movement and video where the microphone did not block
the view of the speaker (Patterson, Gurbuz, Tufekci, and
Gowdy 2002). From the recordings, only disruptive mis-
takes were removed, but occasional vocalised pauses and
mistakes in speech were kept for realistic test purposes.

The training and test data sets used for this study were
based on the CUAVE database specification. 30 subjects to-
talling 1.25 hours of audio data were used for training and
6 subjects totalling 0.25 hours were used for testing. Ad-
ditive Gaussian noise was added to the test data at various
SNR levels. These levels were:

Table 2:Phoneme to viseme mapping for digit recognition

Phoneme Viseme
F /f/
V
T
S /t/
Z

TH
W /w/
R
K /k/
N
IY /iy/
IH
EH /eh/
EY
AH /ah/
AY
AO /ao/
OW
UW /uh/
SIL /sp/
SP

• clean speech

• 18dB

• 12dB

• 6dB

• 0dB

• -6dB

The phoneme/viseme recogniser was trained on clean
speech and tested under noisy conditions.

3.2. Phoneme Recognition based on Viseme Classes

For this study, determining the confusability of the
phonemes grouped by their viseme classes was essentially
a viseme recognition problem. This is due to the fact
that the intraclass and interclass confusions based on the
viseme classes were the results that were required for anal-
ysis. The viseme recogniser used was based on a phoneme
recogniser. In this approach, the audio signals were coded
into a sequence of phonemes. The phoneme sequence was
mapped to a viseme sequence using Table2. The diagram
of this approach is illustrated in Figure1. In Figure1, it can
be seen that the phonemes are modelled as Hidden Markov
Models (HMMs).

An HMM is a stochastic model, into which some tem-
poral restrictions can be incorporated. It can be used to
capture the acoustic characteristic of a speech sound. An
HMM can be considered as a special case of the Bayesian
classifier, where the most probable token sequenceÛ for
given speechX is selected among all possible token se-
quencesU∗ as follows;
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Feature Extraction

Audio Signals

Phoneme HMMsTraining  Speech 
         Data

Phoneme to Viseme
     Lookup Table

   Viseme
Recognition

Figure 1: A viseme recognition system using phoneme
HMMs

Û = arg max
U∈U∗

P (U |X) (1)

One of the distinguishing characteristics of speech is
that it is dynamic. Even within a small segment such as
a phoneme, the speech sound changes gradually. The pre-
vious phones affect the beginning of a phone, the middle
portion of the phone is relatively stable, and the following
phones affect the end of the phone. The temporal informa-
tion of speech feature vectors plays an important role in the
recognition process. In order to capture the dynamic char-
acteristics of speech within the framework of the Bayesian
classifier, certain temporal restrictions should be imposed.
A 5 state left to right HMM is sometimes used for this pur-
pose (S. Lee and D. Yook 2002). This model architecture
was used for this study.

4. Phoneme Confusability Results
The data used in these experiments were parameterised

using Perceptual Linear Prediction (PLP) coefficient fea-
ture extraction. Each feature vector used for the experi-
ments was composed of 12 dimensional PLPs, normalised
energy, and their first and second order time derivatives, re-
sulting in a 39 dimensional vector. It was computed every
10 milliseconds using 25 milliseconds long Hamming win-
dowed speech signals. The HMMs were trained using 7 000
utterances from the CUAVE training data. For the phoneme
recogniser, 22 HMMs including silence models are created
during training. All HMMs were modelled using 5 state
left-to-right HMM with 8 Mixtures per state. As the train-
ing data from the CUAVE database was relatively small,
these models were re-estimated using phone models from

Table 3: Intraclass recognition rates (%) of phonemes
grouped according to their viseme classes over various lev-
els of noise

Viseme clean 18dB 12dB 6dB 0dB -6dB

/ah/ 95.6 97.8 97.8 97.6 88.7 32.4

/ao/ 96.2 96.7 95.9 80.5 55.3 37.0

/eh/ 97.4 97.3 96.2 87.6 62.9 15.1

/f/ 97.5 97.2 97.8 92.6 60.9 33.3

/iy/ 98.7 98.5 97.5 92.7 60.7 18.0

/k/ 97.0 96.3 96.9 95.8 87.3 48.0

/t/ 99.1 98.9 95.0 86.0 56.9 35.0

/uh/ 97.8 95.6 97.8 94.4 35.4 17.7

/w/ 93.7 94.4 92.9 81.7 69.9 33.6

/sp/ 93.9 94.4 94.3 95.8 96.8 100.0

the Wall Street Journal (WSJ) database (Baker and Paul
1992). This was done as the WSJ database had much more
data than the CUAVE database (nearly 80 hours compared
to 1 hour). This resulted in far superior results than the flat-
start phone models that were obtained using the CUAVE
database.

The results from the viseme recogniser over the various
levels of noise are shown in Table3. From this table it can
be seen that the recognition rates for all the visemes were
very high, especially at the clean speech, 18dB and 12dB
levels, which suggests low interclass confusion. The re-
sults at a SNR of 6dB also gave relatively good recognition
rates. However, at the 0dB and -6dB SNR levels, the recog-
nition rates had high variability across the viseme classes.
This suggests that there was high interclass confusion most
likely due to the excessive noise levels present in the audio
signal.

Looking at the intraclass confusion matrix of the
phonemes grouped according to their visemes at 0dB in Ta-
ble4, it can be seen that there is variability in the interclass
confusion of the viseme classes. For the viseme classes
/ah/ and /k/, the phonemes in these classes exhibit low in-
terclass confusion. It would appear on the surface, that
the phonemes in these classes would require little visual
information as no extra information would be introduced
from the visual modality as these phonemes look the same.
However, upon further investigation, the phonemes in these
groups did not share the same commonalities, i.e. the intr-
aclass recognition rates were greatly varied. For example,
the viseme class /k/, is made up of the phonemesN andK.
The phoneme recognition rate ofN was 85.2% which was
similar to the recognition rate for its corresponding viseme
class. However the phoneK only had a recognition rate of
9.4%, which is vastly different. Yet when these rates were
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merged into their viseme class, a very high recognition rate
was achieved. This was because there was approximately
15 times the examples for the phonemeN uttered in the test
set thanK, which introduced massive bias into the results.
This was observed to be a common trend throughout the
result obtained.

Table 4: Intraclass confusion matrix at 0dB, showing the
percentage of the phonemes in their viseme classes ver-
tically being identified as phonemes within the viseme
classes on the horizontal

/ah/ /ao/ /eh/ /f/ /iy/ /k/ /t/ /uh/ /w/ /sp/

/ah/ 88.7 3.2 - - 1.6 - 1.6 1.6 - 3.2

/ao/ 10.1 55.3 - 1.3 - 27.7 - 5.0 0.6 -

/eh/ - 11.3 62.9 - 8.2 10.3 - 3.1 4.1 -

/f/ 2.4 6.8 0.4 60.6 - 12.4 - 2.0 14.1 1.2

/iy/ 2.0 6.1 0.3 0.3 60.7 22.0 0.3 4.4 1.0 2.7

/k/ 1.4 4.3 0.5 3.3 - 87.3 0.3 1.1 1.9 -

/t/ 0.7 3.6 - 6.2 1.1 23.4 56.9 2.2 2.2 3.6

/uh/ - 2.4 - - - 61.0 1.2 35.4 - -

/w/ 4.1 1.0 - 2.0 0.5 7.7 - 14.3 69.9 0.5

/sp/ 0.6 0.2 - 0.2 - 1.4 0.1 0.5 0.1 96.8

This problem highlights a major problem in AVSP.
As audio-visual databases require vast amounts of data
to accommodate both audio and video modalities, these
databases have been only available for small vocabulary
tasks such as digit recognition. The problem of databases
which are designed for isolated and connected digit recog-
nition, are that they are not phonetically balanced like the
TIMIT database (NIST Speech Disc 1-1.1 1990), i.e. it
does not have equal representation of all phonemes spo-
ken therefore introducing bias as seen in this study. At
the present stage, there is currently only one phonetically
balanced audio-visual database and it is designed for large
vocabulary continuous speech recognition. This database
is produced by IBM (Neti, Potamianos, Luettin, Matthews,
Glotin, and Vergyri 2001), but is not commercially avail-
able.

Also at the 0dB SNR ratio, the viseme class /uh/ had
high confusability with a recognition rate of 35.4%. But
looking at Table4, it can be seen that there was high inter-
class confusability with viseme /k/, with the phonemes in
/uh/ being confused with the phonemes in /k/ over 60% of
the time. This can also be attributed to the dataset problem
as there is 4 times as much data for the phonemes in the
viseme class /k/ compared to the phonemes which were in
the viseme class /uh/. As can be seen in Table4, this type
of interclass confusion was present for the majority of the
other viseme classes.

Table 5: Intraclass confusion matrix at -6dB, showing the
percentage of the phonemes in their viseme classes ver-
tically being identified as phonemes within the viseme
classes on the horizontal

/ah/ /ao/ /eh/ /f/ /iy/ /k/ /t/ /uh/ /w/ /sp/

/ah/ 32.4 - - - - - - - - 67.6

/ao/ 2.5 37.0 - - - 58.8 0.8 0.8 - -

/eh/ 1.9 5.7 15.1 - - 35.8 - - 1.9 39.6

/f/ 1.3 1.3 - 33.3 - 38.7 - - 0.7 24.7

/iy/ 2.2 1.3 1.8 0.9 18.0 25.0 - 0.4 - 50.4

/k/ - 0.5 - 0.5 - 98.0 - 0.2 0.2 0.5

/t/ 2.6 3.0 - 3.4 0.4 37.2 35.0 1.7 1.3 15.4

/uh/ 3.2 6.5 1.6 4.8 3.2 59.7 - 17.7 3.2 -

/w/ - 0.9 - 0.9 - 16.8 - 1.9 33.6 45.8

/sp/ - - - - - - - - - 100

Another interesting result stemming from the experi-
ments performed in this work showed that when the noise
level is extreme (i.e. ≤ -6dB), a significant proportion
of phonemes are confused with silences and short pauses.
This can be seen in Table5. Upon reflection, this result
is quite intuitive, as in very noisy environments it is quite
difficult to decipher what sound is being made, so people
look to visual modality for complementary information.
This is backed up by Heckmann et al’s (2002) work, as
in their study they found at the -6dB SNR level, 75% of
the phonemes got confused with silences and short pauses.
However, in the visual domain only 22% of the visemes had
been confused with these pauses.

5. Conclusions
AVSP is becoming a very important area of research

as it has the potential to make speech recognition systems
tractable for real-world applications. In this paper, the re-
sults for a study conducted to determine the confusability
of the phonemes grouped into their visemes classes over
various levels of noise were shown. The results showed
that there was low interclass confusion of the phonemes in
their viseme classes at the clean speech, 18dB and 12dB
levels SNR levels. The results at 6dB were also quite good.
At the 0dB and -6dB level, the results displayed that there
was high variability in the amount of interclass confusion
across some of the viseme classes. Upon further investiga-
tion it was shown that the confusion was due to the dataset
being not phonetically balanced with some phonemes being
uttered almost 15 times more than other phonemes.

Due to this dataset inequality, it would be advisable for
an AVSP system being implemented for a digit recogni-
tion application to pay particular attention to the phonemes

Proceedings of the 10th Australian International Conference on Speech Science & Technology

Macquarie University, Sydney, December 8 to 10, 2004. Copyright, Australian Speech Science & Technology Association Inc.

Accepted after full paper review

PAGE 269



which were being uttered the most. This is due to the fact
that these particular phonemes are the sounds being uttered
the most by a considerable factor. If obtaining and using
the visual information of a speaker’s lip proves to be too
computationally expensive to implement in a digit recogni-
tion application, just using the visual information on these
phonemes, may be a worthwhile exercise. For example, in
this study, it was found that the phonemeN was uttered ap-
proximately 15 times more than the other phonemes. Just
having an AVSP system focus on this particular phoneme
may improve the recognition rate when comparing it to a
ASR system.

Also at these very noisy audio levels, it would also be
wise to have an AVSP system able to segment speech effec-
tively due to the amount of phonemes being confused with
silences and short pauses. As visual speech not only gives
information about speech itself, it also gives segmentation
information. In future work, it is hoped to use the visual
information to select non-speech segments for SNR esti-
mation in the audio channel to help in assigning weights to
the various phonemes in an AVSP system. It is also planned
to continue this study, but this time, we intend to study the
confusability of visemes in the visual domain. Also it is in-
tended that we study the confusability of phonemes accord-
ing to their viseme classes on a large vocabulary continuous
speech recognition audio-visual database.
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