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Abstract 
This paper demonstrates how vowel formant data sets of Australian English, 
from Bernard (1970, 1989) & Cox (1999) can be used to model the reference 
distribution in Bayesian Forensic Speaker Identification. In this paper I show 
how young male Australian same-speaker pairs can be discriminated from 
different-speaker pairs on the basis of their vowel formants in sub-sets of their 
/tense monophthongs/ (Alderman, 2004), using two different reference 
distributions – Bernard’s 1960’s data set of male speakers of Australian 
English, and Cox’s 1990’s data set of male speakers of General Australian 
English. The newer data is shown to yield better discrimination rates, 
although for most parameters the two data sets yield similar results.  

 

1. Introduction 
This paper demonstrates how vowel formant data sets of 
Australian English, from Bernard (1970, 1989) & Cox 
(1999) can be used to model the reference distribution in 
Bayesian Forensic Speaker Identification. In the real 
world, Forensic Speaker Identification (FSI) typically 
involves the comparison of one or more samples of an 
unknown voice with one or more samples of a known 
voice.  The data for comparison may consist of 
recordings of telephone calls, surveillance videos, 
records police interviews and the like.  The court wants 
to determine whether the two samples have come from 
the same person or not, and thus be able either to 
identify the suspect as the offender or exonerate them; 
the forensic expert is usually asked to make some kind 
of statement regarding the similarities/differences 
between the two voices.    

It is now widely accepted that the proper way to 
evaluate the evidence in many areas of forensic 
identification, like FSI, is from a Bayesian perspective 
(Robertson & Vignaux, 1995; Aitken 1995; Rose, 2002; 
González-Rodríguez, Ortega-García & Sánchez-Bote 
2002). In FSI this typically involves comparing suspect 
and offender speech samples against a reference (also 
called background) distribution of the relevant 
population to determine both their similarity and 
typicality (Rose, 2002).  The aim is to estimate a 
likelihood ratio (LR) which quantifies the strength of 
the evidence in favour of same-speaker provenance.    

The Likelihood Ratio is a way of quantifying the 
strength of evidence supporting one of two competing 

hypotheses.  This is not the same as providing a 
statement of the probability of the hypothesis given the 
evidence; this requires access to prior odds, which are 
not generally available to the analyst.  Further, it is not 
the place of the analyst to provide such a statement in a 
legal context, as this is the proper domain of the 
judiciary (Robertson and Vignaux 1995).   

The LR shows the ratio of the probability of 
evidence assuming one hypothesis, divided by the 
probability of evidence assuming the competing 
hypothesis.  This is shown at (1), where p represents 
probability, H a hypothesis (usually of identity), HA a 
hypothesis in competition with H (some statement of 
non-identity), and E represents the evidence under 
consideration. 
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In FSI, H is typically the prosecution hypothesis that the 
samples have been produced by the same speaker, and 
HA the defence hypothesis that the samples were 
produced by different speakers.  A LR greater than 1 
shows a higher relative probability of the evidence given 
the prosecution hypothesis, and a value less than one the 
opposite.  The magnitude of the distance of the LR from 
unity indicates how strongly the evidence supports one 
of the two hypotheses.   

In order to accurately assess the similarity of the two 
speech samples, as well as evaluate the strength of 
evidence supporting the different-speaker hypothesis, a 
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sample which accurately represents the population must 
be used, in order to evaluate just how typical of the 
different speakers in question the samples being 
analysed are.  Two samples may show remarkable 
similarity to each other, but this in itself is not sufficient 
to support the hypothesis that they were produced by 
the same speaker. It must also be evaluated just how 
typical this feature is in the relevant population.  If it is 
very common to have such a feature in the population, 
the similarities between the samples become less 
supportive of the same-speaker hypothesis.   

The reference distribution is therefore an essential 
part of the evaluation of FSI evidence, and the 
identification of appropriate data for use as a reference 
population is therefore essential to the application of 
FSI in Australia. In the late 1960’s John Bernard 
collected and analysed the speech of 170 male speakers 
of Australian English (AE) (Bernard, 1970, 1989). The 
first 3 formants of their vowels were measured. The 
speakers were also categorised according to one of the 
three accent types proposed by Mitchell and Delbridge 
(Mitchell and Delbridge 1965).  As the different-
speaker hypothesis can take a number of forms 
(different speaker, different broad speaker, etc.), this 
means that the data set is potentially useful for a number 
of different variations of the different-speaker 
hypothesis based on accent descriptions.   

A potential problem with the use of the Bernard data 
for FSI in Australia, however, is that it is over thirty 
years old, and it is accepted that language changes over 
time.  While Bernard has been shown to be useful as a 
reference population in FSI – same-speaker pairs can be 
discriminated from different-speaker pairs with it - 
(Alderman 2004; Kirkland 2003; Rose 2003), an 
important question to answer is whether a newer data 
set, reflecting contemporary vowel targets in AE, would 
be more suitable as a reference distribution for the 
actual practice of FSI in Australia.  Cox’s (1999) data, 
while only sampling speakers classified as speaking 
General AE, holds some promise in this regard.  It is 
also structured for comparison with the Bernard data, 
meaning that it is also comparable in structure to the 
experimental data collected in Alderman (2004). 

The aim of the experiment in this paper is to show 
how young male Australian same-speaker pairs can be 
discriminated from different-speaker pairs on the basis 
of their vowel formants in sub-sets of their /tense 
monophthongs/ (Alderman, 2004), using two different 
reference distributions – Bernard’s and Cox’s.  This is 
done using target values for the first three formants of 
the /tense monophthongs/ of AE as recorded by 
Bernard.  The relative performance of the data sets used 
for the reference distribution is examined with relation 
to magnitude of LRs, and also the LR as a discriminant 
function. 

It is shown that both data sets perform well as a 
reference distribution, but that there are some 
differences in the performance of discrimination in 
some parameters which results in the Cox data 
performing slightly better than the Bernard data.    

2. Methods of Modelling the Reference 
Distribution 

2.1. The Normal Approach 

There is more than one method for calculation of the LR 
using continuous acoustic parameters such as formants.  
LRs can be estimated using both analytical and 
empirical approaches – this experiment uses an 
analytical approach using derived LR formulas.  As 
noted in Rose, Lucy, & Osanai (2004), empirical 
approaches are often adopted in automatic Forensic 
Speaker Recognition.   

Within an analytical framework to the estimation of 
LRs in FSI, a number of formulae are available.  All 
have strengths and limitations, and their usefulness 
varies depending on the structure of the data available 
for use as a background sample.  The first of these 
assumes normality in the variables’ distributions, and 
makes use of the mean and standard deviation of the 
sample.  There are a number of variants of this formula, 
but Lindley (1977) derives one such version, which also 
– rather unrealistically for speech - assumes equal 
variance for both samples.  This formula is shown at 
(2). 
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Lindley, in his glass fragment paper, notes that the 
formula used assumes a normal background distribution, 
and that the samples being compared share the same 
variance.  This presented problems regarding the use of 
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LR calculations on data sets that do not exhibit a normal 
distribution.  Rose (2002: 321) argues that a corpus of 
data representing speech is one such example of a 
distribution which may display a deviation from 
normality (Rose 2002: 321).  Figure 1 shows a 
histogram distribution for F2 of /o:/ from Bernard’s data 
set), with a normal curve superimposed.  As can be seen, 
it appears bimodal. 

Figure 1: Histogram of F2 of /o:/ from Bernard’s 
data (all accents combined) 

This non-normality of the reference distribution has 
consequences for the level of accuracy of the LRs, as a 
non-normal distribution may have common values at 
different distances from the mean, meaning that the 
likelihood ratio calculated on the basis of a normal 
distribution may be too high or low.  A benefit of the 
normality model, however, is that only a mean and 
standard deviation are required to model the distribution, 
and secondly, that it has been shown to work (Alderman 
2004; Rose 2003; Kirkland 2003). 

2.2. Kernel Density 

Kernel Density Estimation is capable of modelling non-
normal background distributions, but requires accurate 
estimation of within-speaker variance for a reliable LR 
calculation, as well as access to all of the tokens 
comprising the data set, not just the mean and standard 
deviation.  (Aitken 1995: 184).  There are, however, 
difficulties associated with the use of kernel density 
estimation to model the Bernard data.  

The Bernard data comprises a maximum of three 
tokens for any given vowel for any given speaker.  This 
results in poor estimation of the within-speaker variance.  
Although Alderman (2004) found kernel density 
estimation promising, the difficulty in accurate 
estimation of the within-speaker variance remains a 
problem. 

Additionally, the formula given at (2) was found in 
Alderman (2004) to provide better discrimination for 

some combinations of parameters.  This formula was 
also used in the calculation of the LRs for this 
experiment.  It is hoped that the estimation of within-
speaker variance will be overcome, to allow the proper 
use of kernel density estimation within FSI in Australia, 
as it clearly provides a more accurate representation of 
the reference distribution for use in the calculation of 
the LRs. 

Both the normality and kernel density approaches 
assume independence of the parameters, which has not 
been established for this data.  This is because, whilst 
theoretically this may bias the generated LR, this is an 
empirical test to see which formants, and combinations 
of formants, provide the best performance for the 
practice of FSI in Australia.  Results showing correct 
discrimination of speakers suggest that while some 
dependence may exist between the parameters, this does 
not result in incorrect results, and thus the issue 
becomes less salient to the experiment at hand. Further, 
this “Idiot’s Bayes” approach, assuming independence 
of parameters under analysis, has been shown to 
perform better than methods incorporating dependence 
of parameters (Rose et. al 2004). 

2.3. The Experiment 

The experiment uses data collected for the experiments 
in Alderman (2004).  This data consists of formant 
centre frequencies (F1, F2, & F3) extracted from 
recordings of eleven male speakers of AE, including a 
pair of identical twins, aged between 18 and 26 years of 
age. Tokens of the tense monophthongs were collected 
in a controlled environment. Vowel tokens were elicited 
in a /h_d/ context, in a stressed sentence-final position 
(e.g. “that wasn’t very hard”, for /a/).  This structure was 
intended to provide a comparable structure to the 
Bernard data, in controlling for the effect on F-pattern of 
the perivocalic segments, although it has some 
shortcomings in conforming to the criterion for optimal 
speech samples used in FSI analysis (Rose, 2002). 

Each speaker was recorded on two occasions, 
separated by at least two weeks.  This introduces 
within-speaker variation, a feature of naturally 
occurring speech which is a crucial desideratum for FSI 
experiments of this kind (Rose, 2002).  Twelve tokens 
of each vowel were elicited in each recording session. 

The two non-contemporaneous recordings of the 
eleven speakers provide a total of 231 comparisons 
(eleven same-speaker comparisons and 220 different-
speaker comparisons). LRs were calculated for F1, F2, 
and F3 of each of the tense monophthongal phonemes 
/i/, /a/, /o/, /�/, and /�/, giving at total of 15 individual 
LRs for each speaker pairing for analysis.  
Combinations of LRs were calculated to find the best 
performance in terms of discriminating between same-
speaker and different-speaker pairs.  The combinations 
of parameters found to perform speaker discrimination 
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most successfully were then examined in terms of the 
magnitude of LRs generated. 

The Cox data has only speakers of General AE, and 
for more systematic comparison with the Bernard data, 
only the speakers classified by Bernard as speakers of 
General AE are used in the experiment.   

3. Results 
Table 1 presents LR results for all of the individual 
parameters used. This constitutes 15 individual 
parameters in all (F1, F2, and F3 of 5 vowels). The 
columns marked ‘B’ are the results using the Bernard 
data for the reference distribution; the columns marked 
‘C’ are the equivalent results using Cox’s data as the 
reference distribution. The Cox data is also presented in 
italic font. The SS row lists the percentage of same-
speaker pairs correctly discriminated (out of eleven 
comparisons), and the DS row shows the same 
information for the 220 different-speaker pairings. 
Please note that Table 1 spans across to the next column. 

The LRtest is an overall measurement of the success 
of the tests carried out.  It is a ratio of the number of 
correctly discriminated same-speaker pairings to the 
number of incorrectly discriminated different-speaker 
pairings, and is an overall measure of the strength of 
evidence (the results) supporting the hypothesis that a 
same-speaker pairing will be resolved with a LR greater 
than 1, compared to the hypothesis that a different-
speaker pairing will be resolved with LR>1. The LRtest 

thus takes the form of a ratio of the conditional 
probabilities p(LR>1 | SS) / p(LR>1 | DS).  This works 
the same as other LRs, in that values greater than 1 
suggest greater relative support for same-speaker 
discrimination with LR>1, than different-speaker 
discrimination with LR>1.  Values have been rounded 
to 1 decimal place. 

Table 1: LR results for individual parameters  

F1 /i/ /a/ /o/ 
Set B C B C B C 
SS 45.45 45.45 72.73 72.73 54.55 54.55 
DS 65.00 69.09 74.55 74.55 70.45 69.55 

LRtest 1.3 1.5 2.9 2.9 1.8 1.8 
F2 /i/ /a/ /o/ 
Set B C B C B C 
SS 45.45 54.55 81.82 81.82 54.55 54.55 
DS 82.27 80.91 85 84.55 68.64 68.64 

LRtest 2.6 2.9 5.5 5.3 1.7 1.7 
F3 /i/ /a/ /o/ 
Set B C B C B C 
SS 36.36 36.36 36.36 36.36 54.55 54.55 
DS 79.55 77.27 66.36 65.91 80 82.27 

LRtest 1.8 1.6 1.1 1.1 2.7 3.1 

 
F1 /����/ /����/ 
Set B C B C 
SS 36.36 36.36 63.64 63.64 
DS 65.91 66.82 76.82 76.36 

LRtest 1.1 1.1 2.7 2.7 
F2 /����/ /����/ 
Set B C B C 
SS 63.64 72.73 81.82 81.82 
DS 77.27 75.91 82.27 80.91 

LRtest 2.8 3.0 4.6 4.3 
F3 /����/ /����/ 
Set B C B C 
SS 63.64 72.73 81.82 81.82 
DS 61.36 56.36 67.73 66.36 

LRtest 1.6 1.7 2.5 2.4 
 
The results show that there is not much difference in 
performance between the two data sets as reference 
distributions for FSI.  For the majority of the parameters 
the percentage of successfully discriminated same-
speaker pairs remains constant between reference 
samples. F2 of /i/ did show better same-speaker 
discrimination using the Cox data, as did F2 and F3 of  
/�/. F2 of /�/ has one of the largest mean differences 
between the data sets; for the tense monophthongs only 
F3 of /o/ exhibited a larger difference between the data 
sets (Cox 1999). In all of three instances the use of the 
Cox data as the reference distribution yielded 1 more 
correctly discriminated same-speaker pair than when 
using the Bernard data.  

However, for the individual tests, the Cox data does 
not generally discriminate different-speaker pairings as 
well as the Bernard data.  Out of the 15 individual 
parameters, only F1 of /i/, F3 of /o/, and F1 of /�/ have 
better different-speaker discrimination rates when using 
the Cox data. The reasons for this are not apparent, but 
may have to do with sample size or other factors. This is 
important, especially in forensic contexts, where the 
future freedom of a suspect in part depends on the 
results of such an analysis.   

 Individual LRs can be combined by simply 
multiplying them together. The implicitly “Idiot’s 
Bayes” approach used in this experiment does not need 
to account for any correlations between parameters.  
Table 2 presents the discrimination rates for optimum 
combinations of parameters, when using the two 
reference distributions. Optimum combinations are 
those with the highest LRtest values while maintaining 
high levels of different-speaker discrimination, which as 
stated is an important consideration in forensic contexts. 
Combining more parameters yields theoretically larger 
LRs (through multiplication of individual LRs), so 

Proceedings of the 10th Australian International Conference on Speech Science & Technology

Macquarie University, Sydney, December 8 to 10, 2004. Copyright, Australian Speech Science & Technology Association Inc.

Accepted after abstract only review

PAGE 180



number of parameters is also salient in the selection of 
optimum combinations. 

Table 2: LRs for Optimum Combinations of Parameters 
(n.d. = not defined) 

 All F2, 
/�/&/a/ F1 

All F2, /�/&/a/ 
F1,  /�/&/�/ F3 

All parameters 
combined 

Set B C B C B C 
SS 7 7 7 8 4 5 
DS 219 219 219 219 220 220 

LRtest 140 140 140 160 n.d. n.d. 
 
The performance of the two data sets as reference 
distributions remains very similar for combinations of 
the individual LRs.  It can be noted again that the level 
of same-speaker discrimination is the same or better 
when using the Cox data as the reference distribution, 
and that, when combining parameters, the level of 
different-speaker pair discrimination equals that of the 
results when using the Bernard data as the reference 
distribution.   

The LRtest for the experiment varies by combination 
of parameters, but again both data sets can be seen to 
perform well as a reference distribution for the 
discrimination of pairs of recordings from male 
speakers of General AE.  For the Cox data, the two 
highest LRtests were generated by combining the LRs 
yielded by F2 for all vowels, F1 of /a/ and /�/, and F3 
of /�/ and /�/, for a total of 9 parameters combined. 
This combination resulted in an LRtest of 160, with 
72.7% (8/11) same-speaker pairs correctly 
discriminated, and 99.55% (219/220) different-speaker 
pairs correctly discriminated.   

This can be compared to a maximum LRtest of 140 
for the Bernard data when using only the data classed as 
from speakers of General AE.  In terms of verbal 
equivalents of LRs used by the British Forensic Science 
Service, both of these values would be expressed as 
providing moderate support for the hypothesis that 
same-speaker pairs will be resolved with LR values 
greater than 1 (González-Rodríguez et. al 2002). 

A method of graphically expressing both the 
magnitude of LRs calculated, and the relative 
performance of the SS and DS pairings is to use 
cumulative distribution functions (Drygajlo, Meuwly, 
and Alexander, 2003).  Figure 1 presents the cumulative 
distribution functions of the Log10(LR) values for the 9 
parameter combination yielding the highest LRtest 
scores. The Log10 transformation of the LRs changes the 
threshold of discrimination to 0 (Log10(1)). The analysis 
using the Bernard data as the reference distribution is 
shown in the left panel, with the results using the Cox 
data shown on the right.  Each panel also shows the 
equal error rate for the test (labelled EER).  Log10(LR)s 

are shown along the x axis, with percentage of sample 
shown on the y axis. 

 

Figure 1: Cumulative Distribution Function of 
Log10(LR) values for combination of all F2, F1 

of /a/ and /�/, and F3 of /�/ and /�/, using 
Bernard data (left) and Cox data (right). 

In both panels the DS curve shows almost 100% of 
cases correctly discriminated. For both data sets there is 
a much larger magnitude of DS LR values than SS for 
both sets of LRs shown in Figure 1.  The LR values for 
the same-speaker pairings are plotted as dots along the 
curve.  The extra correctly discriminated same-speaker 
pairing using the Cox data can be seen close to the 
vertical line marking the discrimination threshold. The 
similarity in the curves between the two panels 
highlights the similarity in the results using the different 
reference distributions. For both sets of LR calculations 
the different-speaker pairings are resolved with  
Log10(LR)s of nearly -150, while same-speaker pairings 
are resolved with values quite near to threshold (a 
maximum of 8 for the Cox data, and 7 for the Bernard 
data).  

4. Conclusion 
The two data sets separated by 30 years perform 
similarly in terms of successful discrimination of same- 
and different-speaker pairs of male speakers of AE.  A 
number of observations can be made here. 

The Bernard data set of over thirty years of age can 
be seen to be still useful as a reference distribution for 
FSI in Australia. 

The Cox data shows that in some parameters 
undergoing change in target (such as /�/), a more recent 
reference distribution can result in improved 
discrimination of speaker pairs.   

Differences in performance of parameters can be 
exploited to maximise the accuracy of the result in a 
real forensic situation. For example, if the data to be 
analysed contained frequent tokens of /�/, then the 
results obtained here suggest that the Cox data would be 
a better reference distribution. This is also of course 
reliant on the classification of the speech samples to be 
compared as General AE (as this is the only accent 
category collected in Cox 1999).  
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The similarity in result across the majority of 
parameters suggests that both data sets could be used in 
some contexts, as a way of verifying and strengthening 
results of analyses. 

Overall, the Cox data can be seen to perform better 
than the Bernard data in terms of LRtest values, although 
the difference between 140 and 160 in the LRtest is not 
particularly large. While not providing conclusive 
evidence, this suggests that the newer data set 
outperforms the Bernard data as a reference distribution 
for Bayesian FSI on male speakers of General AE.  This 
supports the notion that an accurate LR requires an 
accurate reference sample that reflects the population 
being tested. 

This leads to the inference that while Bernard’s data 
set is still useful at this stage for the discrimination of 
male speakers of AE, as more time passes and further 
change occurs its usefulness as a reference distribution 
will diminish. The Cox data, while newer and 
performing better than the Bernard data for General AE 
speakers, does not cover the breadth of accent type 
presented in the Bernard data. A data set capturing non-
contemporaneous tokens of the different vowels of 
contemporary AE, and encompassing speakers of 
different accent classifications, ages, and genders is thus 
an extremely important project, not only as a reference 
distribution for FSI in Australia, but also as a way of 
documenting and recording the sound change ongoing 
in Australian English.   
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