
Phonetic and Lexical Speaker Recognition in Reduced Training Scenarios

Brendan Baker, Robbie Vogt and Sridha Sridharan

Speech and Audio Research Laboratory,
Queensland University of Technology,

GPO Box 2434, Brisbane, AUSTRALIA, 4001.
{bj.baker, r.vogt, s.sridharan }@qut.edu.au

Abstract
High-level features have been shown to be effective for speaker recognition when large amounts
of training data are available for speaker model training; however the feasibility of such long
lengths of training for many applications is questionable. This paper describes the evaluation
of phonetic and lexicaln-gram based speaker recognition systems for reduced training lengths.
Maximum likelihood modelling is compared to a recently developed MAP adaptation mod-
elling technique. Results obtained using a restructured NIST 2003 Speaker Recognition Ex-
tended Data Task corpora indicate that significant gains in performance for both the phonetic
and lexical based speaker recognition can be achieved through use of this adaptive modelling
technique. The results from fusion experiments also demonstrated that the individual system
improvements obtained for the high-level features translated into an overall performance gain
when used along side traditional acoustic techniques. The MAP adapted modelling process was
shown to extend the usefulness of high-level features to shorter training lengths, with results in-
dicating that even when only one conversation side was used for training, the high-level systems
provide complementary classifications and improved recognition performance.

1. Introduction

In recent times, automatic speaker recognition research
has expanded from utilising only the acoustic content of
speech to examining the use of higher levels of speech
information, commonly referred to as high-level features.
These high-level features refer to information such as
linguistic content, pronunciation idiosyncrasies, idiolectal
word usage, prosody and speaking style. This change in
research focus has been motivated by the belief that these
high-level features can provide complementary informa-
tion, and that the estimation of these features is more robust
to changes in acoustic conditions.

A promising direction in high-level feature research has
been the use ofn-gram based models to capture speaker
specific patterns in the phonetic and lexical content of
speech. Doddington (2001) performed an important ini-
tial study into the use of the lexical content of speech for
speaker recognition, and introduced ann-gram based tech-
nique for modelling a speaker’s idiolect. This direction in
research was continued by Andrews, Kohler, Campbell, and
Godfrey (2001), who used similarn-gram based models to
capture speaker pronunciation idiosyncrasies through anal-
ysis of automatically recognised phonetic events.

The research of Andrewset al. and Doddington showed
word and phonen-gram based models to be quite promis-
ing for speaker recognition, however, good performance
was really only achieved when excessive lengths of training
data were provided. Reduced training scenarios resulted in
under-trained models, providing little or no benefit in clas-
sifying the speaker. Consequently, the practical applicabil-
ity of these techniques was greatly restricted.

Initial research into the use of high-level features has fo-
cused on characterising high-level knowledge sources and
defining new feature sets. Now that several useful features

for speaker recognition have been identified, an obvious
next step is to further develop the classification and mod-
elling techniques, and to analyse and improve performance
of these systems under restricted testing and training con-
ditions. In particular, techniques need to be developed to
improve performance under limited training data situations.

Baker, Vogt, Mason, and Sridharan (2004) introduced
an adaptive training technique forn-gram based speaker
models. Applying aMaximum A Posteriori(MAP) estima-
tion solution and adapting then-gram speaker models from
a background model resulted in significant gains in perfor-
mance. The experiments on the NIST 2003 Extended Data
Task (NIST 2003 EDT) database demonstrated that when
compared against traditional Maximum Likelihood (ML)
models, the same performance could be obtained with half
the amount of training data by using the MAP adapted mod-
els.

The introduction of the MAP adaptation technique pro-
vided significant improvements, however, neither this tech-
nique, nor any phonetic or lexical modelling technique, has
been thoroughly tested using less than 10 minutes of train-
ing speech for each speaker. For a range of potential appli-
cations of the technology, 10 or more minutes of training
data is infeasible.

This paper examines the value of these high-level ap-
proaches, and the adaptive modelling approach forn-gram
based features using reduced lengths of training speech of
around 2 to 3 minutes. To facilitate this evaluation, the
NIST 2003 EDT was restructured to include two new train-
ing length conditions: one conversation side, and three con-
versation sides.

Section 2 of this paper describes the phonetic speaker
recognition system including a description of the front-end
phone recognition process and both the ML and MAP mod-
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elling techniques tested. Section 3 briefly describes the lex-
ical speaker recognition system that was also developed.
Results for these individual high-level systems using re-
duced training lengths are provided in Section 4, along with
a description of the database and testing procedure used.

Fusion experiments were carried out, in order to deter-
mine the complementary nature of the classifications pro-
vided by the high-level features in the reduced training sce-
narios. The phonetic and lexical classifiers (both ML and
MAP) were fused with those obtained using a traditional
acoustic speaker recognition system. Results and details of
these fusion experiments are outlined in Section 5.

2. Phoneticn-gram speaker recognition
The phonetic speaker recognition system is derived

from the system described by Andrews et al. (2002) -
where speaker specific information is captured by analysing
sequences of phone labels produced by open-loop phone
recognisers. Andrews’ approach was to compare relative
frequencies ofn-gram tokens, allowing for the capturing of
recognised phonetic patterns of individual speakers. The
process used phone streams produced by multiple language
open-loop phone streams. The transcriptions produced by
‘off’-language recognisers are known asrefracted phone
transcriptions (Andrews et al. 2002). These refracted
streams of phones are capable of providing speaker infor-
mation which is complementary to the true language’s pho-
netic transcription.

2.1. Front-end phone recognition

The front end of the phonetic speaker recognition sys-
tem consists of six independent open-loop phone recognis-
ers. Three state HMMs were trained for each phone us-
ing the OGI phonetically transcribed multi-lingual corpus
(Muthusamy, Cole, and Oshika 1992), consisting of six dif-
ferent languages: English, German, Hindi, Japanese, Man-
darin and Spanish. The speech recordings were parame-
terised by calculating 12th order Perceptual Linear Predic-
tive (PLP) coefficients (Hermansky 1990) and energy, plus
their corresponding delta and acceleration coefficients.

The six independent phone recognisers were used to de-
code all speaker testing and training data. The transcrip-
tions were post processed to includestart andend tokens
around speech utterances. An utterance was defined as the
sequence of phones occurring between two periods of si-
lence.

2.2. Maximum likelihood speaker modelling

A baseline phonetic speaker recognition system was de-
veloped using the maximum likelihood criterion for speaker
model training. The speaker models consist of simple
multinomial distributions of the frequencies of phoneticn-
gram tokens. When scoring, each phone transcription is
tested against Phonetic Speaker Models (PSM) and a Uni-
versal Background Phonetic Model (UBPM) using a tradi-
tional likelihood ratio test (LRT).

The likelihood estimates for a modelm, are estimated
from the training data using

lm(k) =
Cm(k)∑N
n=1 Cm(n)

, (1)

wherek represents ann-gram token, andCm(k) is the fre-
quency count of the tokenk in the training data.

To verify speakerm, the test segment score is calculated
as the log likelihood ratio (LLR) of the speaker likelihood
to background likelihood and is given by

Λ =
∑
k(w(k) · log[lm(k)/lubm(k)])∑

k w(k)
, (2)

wherew(k) is a weighting function for tokenk, based on
the countC(k) of the token in the test segment and a dis-
counting factor,d. The weighting function is calculated as

w(k) = C(k)1−d (3)

The discounting factor,d, has permissible values be-
tween 0 and 1. Ford = 0 there is no discounting. Ford = 1
there is absolute discounting, meaning a particularn-gram
token will contribute the same increment to the total score
regardless of the number of times thatn-gram token occurs.

Doddington (2001) and Andrews et al. (2002) found
that improved performance could be achieved by ignoring
infrequentn-grams due to the inaccuracies in modelling
these infrequent events. To this end, the baseline system
was developed to take a pruning thresholdcmin as an addi-
tional parameter.N-grams that occur less thancmin times
in the background training data are ignored in the scoring
process.

After test segment scores are calculated for each phone
stream, the scores are fused together to generate an overall
score for the test segment. In the baseline system created
for this study, a Multi-layer Perceptron (MLP) neural net-
work architecture implemented using theLNKnet pattern
classification software (Massechusetts Institute of Technol-
ogy Lincoln Laboratory 2004), was used to fuse the indi-
vidual scores.

2.3. MAP adapted modelling

In the baseline system, the ML criterion (Equation 1)
was used to train each PSM using the set ofn-gram frequen-
cies extracted from the model training data. In (Baker et al.
2004), we proposed the use of an adaptive training process
in order to combat data sparsity issues and improve the ro-
bustness of the models. This was achieved by tying prior
information about a model’s parameters into each speaker’s
PSM. The Bayesian learning framework and MAP estima-
tion algorithms provided us with methods to do this.

Lee and Gauvain (1996) outlined a MAP estimation
solution applicable to multinomial densities which was
adapted for this work. The MAP solution used for the n-
gram frequencies can be expressed as

l̃m(k) =
C̃m(k)∑N
n=1 C̃m(n)

(4)

The MAP re-estimated count is calculated using the
speaker specific n-gram frequencies from the training data,
along with the hyper-parametersv(k). This re-estimated
count can be expressed as

C̃m(k) = Cm(k) + v(k)− 1, (5)
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which optimally combines the n-gram frequency counts
from the training data with prior knowledge of the model
parameter distributions expressed inv(k). If we take the
UBPM as an estimation of thea priori n-gram frequency
expectations,v(k) becomes simply a weighted expression
of the UBPM. By imposing the condition

v(k) = αCubm(k) + 1, (6)

Equation 5 becomes

C̃m(k) = Cm(k) + αCubm(k), (7)

whereα is an adaptation weight in the range [0, 1]. In
the limit of no adaptation data, this reverts to the back-
ground model, while converging to the ML solution for in-
finite training data. This MAP adaptation solution ensures
numeric stability in the models and effectively cancels the
need forad hocpruning thresholds (Baker et al. 2004).

3. Lexical speaker recognition
A word-based speaker recognition system was created

based on that described by Doddington (2001). The ap-
proach uses wordn-gram statistics gathered from ASR tran-
scriptions of the speech as features for the speaker recogni-
tion process.

3.1. ASR transcriptions

For this study, transcriptions produced by the BBN real-
time Byblos system were used. Beforen-gram statistics
were gathered, the transcriptions were pre-processed to add
start andend tags to sentence boundaries based on pauses
in the speech.

3.2. Speaker modelling

Speaker modelling and scoring is performed in the same
manner as the phonetic technique described in Section 2
substituting phoneticn-gram tokens for wordn-gram to-
kens and using only a single token stream (English word
transcriptions). Both ML and MAP adapted modelling
techniques were evaluated for the lexical system in this
study.

4. Experiments
4.1. Database

The developed speaker recognition systems were evalu-
ated and compared using data from the NIST 2003 Speaker
Recognition Evaluation Extended Data Task corpus. (For
further information see (National Institute of Standards and
Technology 2003)). The evaluation data is a subset of
the Switchboard-II Phase 2 and 3 corpora (Linguistic Data
Consortium 1997). The aim of this paper was to exam-
ine the performance of then-gram based high-level fea-
tures in reduced training scenarios. To this end, the NIST
2003 EDT evaluation procedure was restructured to include
two new training length conditions: one conversation side,
and three conversation sides. These correspond to approxi-
mately2.5 minutes and7.5 minutes of training data respec-
tively. The training and testing lists for these new condi-
tions were derived from the existing four conversation side

lists. Modifications were also made to the evaluation to in-
clude more impostor trials.

During the development of both the phonetic and lexi-
cal systems, a development data set consisting of splits 1-
4 of the NIST 2003 EDT evaluation data was used. This
development data set was used to tune the various parame-
ters of the recognition systems, and to train the neural net-
work used for fusing results from multiple phone streams
in the phonetic speaker recognition system. Once the sys-
tems were calibrated, overall results were obtained using
the remaining evaluation splits (5-10).

4.2. Phonetic System Performance

The phonetic speaker recognition system was evaluated
using both ML and MAP adapted models. Our previous
experiments (Baker et al. 2004) have shown that when us-
ing ML models, best performance is obtained for triphone
models with absolute discounting (d = 1) and a pruning
threshold ofcmin = 500. For our MAP adapted models, a
MAP weighting ofα = 0.01 was used along with absolute
discounting. No pruning is necessary for the MAP adapted
models.

Results were obtained for the newly defined one and
three conversation side training length conditions. Figures
1 and 2 show detection-error tradeoff (DET) curve compar-
isons of the ML and MAP systems for three and one side
training conditions respectively. In Figure 1 it can be seen
that a vast improvement over the ML model is achieved
when the MAP adapted models are used. Using the adapted
models gave a 34% relative improvement in terms of equal
error rate (EER). This improvement trend is continued in
the one side training condition and is illustrated by Figure
2. For this condition, using the MAP adapted models de-
creased the EER from 41% to 28%, equivalent to a 30%
relative improvement.

4.3. Lexical system performance

Similar tests were performed on the lexical speaker
recognition system. For the lexical system the best per-
formance was provided by bigram models. Maximum like-
lihood and MAP adapted models were compared with the
following parameters:

• ML models:d = 1, cmin = 0

• MAP models:d = 1, cmin = 0, α = 0.01

Results were obtained for the one and three conversation
side training length conditions. Figure 3 demonstrates the
improvement gained by using MAP adapted models for the
three side condition. Using MAP adapted models gave
a 18% relative improvement in EER over ML modelling.
For the one side training length condition (see Figure 4), a
13% relative improvement was gained through the use of
adapted models.

5. Fusion with acoustic system
The lexical and phonetic system results indicate that

significant performance gains can be made in reduced train-
ing length scenarios through adaptive modelling. The im-
provements gained in the individual performance of both
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Figure 1:DET plot comparing Phonetic ML and MAP mod-
elling techniques for the three conversation sides training
length condition.

  0.1   0.2  0.5    1     2     5     10    20    40  

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

PHN ML (1side)

PHN MAP (1side)

Figure 2: DET plot comparing Phonetic ML and MAP
modelling techniques for the one conversation side train-
ing length condition.

the phonetic and lexical speaker recognition systems, how-
ever, are of little use unless they also translate into a per-
formance gain when used in conjunction with an acoustic
system.

In reduced training scenarios particularly, it is expected
that most of the classification strength will be provided by
the acoustic methods. The value of high-level features,
therefore, is in the complementary information they pro-
vide. To this end, a set of fusion experiments were per-
formed in order to evaluate the complementary nature of
the phonetic and lexical speaker classifications in such con-
ditions.
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Figure 3:DET plot comparing Lexical ML and MAP mod-
elling techniques for the three conversation sides training
length condition.
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Figure 4:DET plot comparing Lexical ML and MAP mod-
elling techniques for the one conversation side training
length condition.

5.1. Acoustic system

The acoustic speaker recognition system used is a stan-
dard GMM-UBM system (Reynolds 1997) using short-term
cepstral-based feature vectors consisting of 12 MFCC’s and
12 corresponding delta coefficients. Before the features are
extracted, the audio is band filtered between 300Hz and
3.2KHz, followed by an energy based speech activity de-
tection (SAD) process. After features have been extracted,
feature warping is also applied (Pelecanos and Sridharan
2001).

The UBM is a 512 mixture component Gaussian mix-
ture model. Speaker models are derived from the UBM us-

Proceedings of the 10th Australian International Conference on Speech Science & Technology

Macquarie University, Sydney, December 8 to 10, 2004. Copyright, Australian Speech Science & Technology Association Inc.

Accepted after full paper review

PAGE 554



ing an iterative MAP adaptation process (Pelecanos, Vogt,
and Sridharan 2002). The verification score for each test
utterance is calculated as the expected log-likelihood ratio
of the claimant and the UBM. For the experiments carried
out in this study, no handset or test segment score normali-
sation techniques were used.

5.2. Fusion

Fusion of the GMM-UBM acoustic system and high-
level feature systems was performed using a Multi-layer
Perceptron (MLP) neural network. Two fusion combina-
tions were trialled for each training length condition. The
first fused system, denoted in the plots byAC+HL(ML),
consisted of the acoustic system scores combined with
those obtained from the tuned ML phonetic and lexical sys-
tems. The second combined the classifications from the
acoustic system with the MAP adapted high level systems,
and is denoted byAC+HL(MAP).

The MLP training and testing was performed us-
ing the LNKnet pattern classification software package
(Massechusetts Institute of Technology Lincoln Laboratory
2004), using the development splits (1-4) for training, and
the remaining splits for evaluation. Three inputs, consisting
of the classification scores from the acoustic, phonetic and
lexical systems, were fed into a single hidden-layer MLP.
Simple mean and variance normalisation was performed to
the features before fusion. Additionally, the priors were
adjusted to specifically minimise the detection cost func-
tion (DCF) criterion specified for the NIST evaluation (Na-
tional Institute of Standards and Technology 2003).

Figure 5 compares the DET curves for a baseline acous-
tic system, and the two fusion combinations for the three
side training length condition. It can be seen that there
is generally improved performance for the AC+HL(ML)
system over the acoustic baseline, with a 12.3% relative
improvement in EER achieved. This is with the excep-
tion of the high false alarm region, where performance de-
grades and is behind that of the acoustic system. It can also
been seen that the fused system incorporating MAP adapted
models gave an even larger gain in performance. The curve
shows that the AC+HL(MAP) system is consistently ahead
of both the acoustic and AC+HL(ML) fused system, with
a 23.8% relative improvement in EER achieved over the
acoustic baseline.

Similar trends in performance were found when the
training length was further reduced to one conversation
side. Figure 6 depicts the DET curves for the acoustic
baseline and the two fused systems for the one side train-
ing length condition. The AC+HL(ML) system only gave
a slight improvement over the acoustic baseline. Signifi-
cant gains, however, were achieved when using the MAP
adapted fused system. For the AC+HL(MAP) system, a
13.6% relative improvement in EER was achieved over
the acoustic system. The minimum detection cost func-
tion (DCF) was also measured for each of the systems. In
Figure 7, a comparison of the minimum DCF values ob-
tained for the acoustic system and the two fusion combina-
tions is given for both the one and three side training condi-
tions. For both training conditions, the fused systems gave
better minimum DCF results than the acoustic baseline.
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Figure 5: DET plot for the three side training condition
comparing a) a baseline acoustic system b) a fused acous-
tic and ML high-level system c) a fused acoustic and MAP
adapted high-level system.
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Figure 6:DET plot for the one side training condition com-
paring a) a baseline acoustic system b) a fused acoustic and
ML high-level system c) a fused acoustic and MAP adapted
high-level system.

The best performing system in terms of minimum DCF,
was the AC+HL(MAP) MAP adapted fused system, with
21.8% and 11.7% relative improvements over the baseline
for the three side and one side training length conditions
respectively.

6. Conclusions
Phonetic and lexicaln-gram based speaker systems

were evaluated using substantially reduced lengths of train-
ing speech. Traditional ML modelling and a previously
developed adaptive modelling technique forn-gram based
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Figure 7: Minimum DCF values (×10−2) for the acoustic
baseline and the fused acoustic and high-level systems for
the one and three side training length conditions.

features were tested using a restructured NIST 2003 EDT
protocol that included two new reduced training length con-
ditions. Results indicated that the MAP adaptation process
reduced model sparsity effects and showed a marked im-
provement in performance over ML models for both pho-
netic and lexical techniques.

The individual improvements in performance obtained
for the n-gram based features were also found to trans-
late into overall gains in performance when used along
side acoustic classifications. Fusion experiments performed
combining acoustic classifications with the high-level clas-
sifications showed that even with as little as one conver-
sation side of training data, the enhanced high-level sys-
tems provided complementary classifications and improved
recognition performance.

7. Acknowledgements
This research was supported by the Office of Naval Re-

search (ONR) under grant N000140310662.

References
Andrews, W., M. Kohler, J. Campbell, and J. Godfrey

(2001). Phonetic, idiolectal, and acoustic speaker
recognition. In A Speaker Odyssey, The Speaker
Recognition Workshop.

Andrews, W., M. Kohler, J. Campbell, J. Godfrey, and
J. Hernandez-Cordero (2002). Gender-dependent
phonetic refraction for speaker recognition. InIEEE
International Conference on Acoustics, Speech, and
Signal Processing, Volume 1, pp. 149 –152.

Baker, B., R. Vogt, M. Mason, and S. Sridharan (2004).
Improved phonetic and lexical speaker recognition
through MAP adaptation. InOdyssey: The Speaker
and Language Recognition Workshop, pp. 94–99.

Doddington, G. (2001). Speaker recognition based
on idiolectal differences between speakers. InEu-
rospeech, Volume 4, Denmark, pp. 2517–2520.

Hermansky, H. (1990). Perceptual linear predicive (PLP)
analysis of speech.The Journal of the Acoustical So-
ciety of America 87(4), 1738–1752.

Lee, C. and J. Gauvain (1996). Bayesian adaptive learn-
ing and MAP estimation of HMM. InAuotmatic
speech and speaker recognition : Advanced topics,
pp. 83–107. Boston, Massachusetts, USA: Kluwer
Academic Publishers.

Linguistic Data Consortium (1997). SWITCHBOARD:
A user’s manual. http://www.ldc.upenn.edu/
readmefiles/switchboard.readme.html.

Massechusetts Institute of Technology Lincoln Labora-
tory (2004). LNKnet Pattern Classification Software.
http://www.ll.mit.edu/IST/lnknet/.

Muthusamy, Y., R. Cole, and B. Oshika (1992). The OGI
multi-language telephone speech corpus. InInterna-
tional Conference on Spoken Language Processing.

National Institute of Standards and Technol-
ogy (2003). NIST speech group website.
http://www.nist.gov/speech.

Pelecanos, J. and S. Sridharan (2001). Feature warp-
ing for robust speaker verification. InA Speaker
Odyssey, The Speaker Recognition Workshop, pp.
213–218.

Pelecanos, J., R. Vogt, and S. Sridharan (2002). A
study on standard and iterative MAP adaptation for
speaker recognition. InInternational Conference on
Speech Science and Technology, pp. 190–195.

Reynolds, D. (1997). Comparison of background nor-
malization methods for text-independent speaker
verification. InEurospeech, Volume 2, pp. 963–966.

Proceedings of the 10th Australian International Conference on Speech Science & Technology

Macquarie University, Sydney, December 8 to 10, 2004. Copyright, Australian Speech Science & Technology Association Inc.

Accepted after full paper review

PAGE 556


