
Frame-Weighted Bayes Factor Scoring for Speaker Verification

Robbie Vogt and Sridha Sridharan

Speech and Audio Research Laboratory,
Queensland University of Technology

GPO Box 2434, Brisbane, AUSTRALIA, 4001.
{r.vogt, s.sridharan }@qut.edu.au

Abstract
In this paper, the Bayes factor is considered as a replacement verification criterion to the
likelihood-ratio test in the context of GMM-based speaker verification. An advantage of this
Bayesian method is that it allows for the incorporation of prior information and uncertainty of
parameter estimates into thescoringprocess, complementing the Bayesian adaptation used in
training. A development of Bayes factors for GMMs is presented based on incremental adapta-
tion that is well-suited to inclusion in existing GMM-UBM systems. This method is extended to
include the weighting of test frames to account for their statistical dependencies. Experiments
on the 1999 NIST Speaker Recognition Evaluation corpus demonstrate improved performance
over expected log-likelihood ratio scoring. These findings are supported with results from a
modified version of the NIST Extended Data corpus of 2003.

1. Introduction
Over the past decade, speaker recognition technology

has advanced to the extent that it is sufficiently accurate for
use in real applications. However, to date the range of these
applications falls well short of the extensive possibilities for
the technology.

While current state-of-the-art text-independent speaker
verification systems are capable of equal error rates (EER)
of 1-10%, many applications require an EER in the order of
0.1%. It is clear that there are still significant improvements
required.

Many of the techniques used in current speaker ver-
ification technology require vast amounts of contextual
acoustic data to adapt the system to a particular situa-
tion or application of interest. Most advances in speaker
recognition in recent times (in very broad terms) have
been developments that find ways to utilise more data to
train, adapt or otherwise fortify speaker recognition sys-
tems in adverse conditions. Techniques that fall in this
category include the introduction of Universal Background
Models (UBM) (Reynolds 1997), handset type and test-
segment normalisation (H-Norm and T-Norm) (Aucken-
thaler, Carey, and Lloyd-Thomas 2000).

In contrast, this paper presents an improved scoring
method for GMM-based speaker verification systems by
employing a Bayesian approach to analysing the underlying
verification problem. The resulting technique replaces the
commonly used likelihood-ratio test (LRT) with a criterion
based on Bayes factors (Kass and Raftery 1995). Hypothe-
sis testing using Bayes factors has several advantages over
non-Bayesian approaches including the ability to evaluate
evidencein favour of the null hypothesis and to incorpo-
rate prior information into the scoring process analogous to
maximum a posteriori(MAP) adaptation for model train-
ing.

The work presented herein was motivated by the appli-
cation of Bayes factor scoring to speaker verification cham-
pioned byJiang and Deng (2001) and while it adopts their

central theme several significant implementational choices
differentiate this work from its predecessors. Firstly, an in-
cremental Bayes learning approach is used for calculating
Bayes factors for GMMs instead of a Viterbi approximation
method. Secondly, the method presented is more suited to
current state-of-the-art systems based on a GMM-UBM ap-
proach and MAP adaptation; it is effectively a drop-in re-
placement scoring method. It extends the work presented
in Vogt and Sridharan (2004) with a novel frame-weighted
adaptation variant of Bayes factor scoring to compensate
for highly correlated acoustic features commonly used in
speaker verification.

Section2. presents speaker verification (and the verifi-
cation problem in general) in terms of a statistical hypoth-
esis test, proceeding to develop the decision criterion for
verification under a Bayesian framework and resulting in
the Bayes factor.

In Section3. Bayes factor scoring of GMMs is derived
and the implementational aspects of the speaker verification
system used for experimental comparison are presented.
Section3.2. also presents a novel enhancement of the pre-
sented Bayesian methods specific to acoustic speaker ver-
ification by compensating for the highly correlative nature
of commonly used acoustic features via frame weighting.

Section4. details the experiments performed and re-
sults achieved when comparing the LRT based speaker ver-
ification system to the proposed Bayes factor scored sys-
tem. These experiments target conversational telephony
data and are based on both the NIST 1999 Speaker Recog-
nition Evaluation protocol (Section4.1.) and a modified
version of the NIST 2003 Extended Data Task protocol
(Section4.2.).

2. Bayes factors
Speaker verification, and verification problems gener-

ally, can be considered in the framework of statistical hy-
pothesis testing. In the case of speaker verification, the hy-
pothesis under scrutiny,H1, is that an utterance was pro-
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duced by the claimant speaker. The null hypothesis,H0, is
simply that the utterance was produced by another speaker.
Under this scenario, the appropriate statistic for testing the
hypotheses is the posterior odds ofH1 given by

P (H1|D)
P (H0|D)

(1)

whereD is the available data evidence andP (Hk|D) is
thea posterioriprobability of the hypothesisHk given this
evidence. Applying Bayes theorem to the numerator and
denominator, (1) becomes

P (H1|D)
P (H0|D)

=
P (H1)
P (H0)

× P (D|H1)
P (D|H0)

(2)

It can be readily seen that the posterior odds are the prior
odds scaled by a factor dependent on the evidence. This
scaling factor is theBayes factor(Kass and Raftery 1995),
denotedB10 or simplyB,

B10 =
P (D|H1)
P (D|H0)

(3)

The Bayes factor can be used directly as a decision cri-
terion for verification, with an easily interpreted threshold
if the prior odds are known.

Typically, the available evidenceD consists of the test
utterance,y, and training data for the claimant, represented
by X. Incorporating this data, the Bayes factor becomes

B10 =
P (y, X|H1)
P (y, X|H0)

(4)

For this paper we are particularly concerned with the
solution of (4) incorporating a parametric model structure
to represent a speaker or class (Gaussian mixtures). Under
a Bayesian framework, the model parameters are consid-
eredunknown random variableswhich themselves have a
probability density distribution, allowing for the case of in-
complete data and uncertainty in parameter estimates. Thus
to calculateP (D|Hk) in (3), we must integrate the densi-
ties p(λ|Hk) over the model parameter space (rather than
determining parameter estimates that maximise it).

P (D|Hk) =
∫

p(D|λ,Hk)p(λ|Hk)dλ (5)

whereλ is the vector of unknown parameters for the model
representing the claimant. Under this framework, (4) can
be expressed as

B10 =
∫

p(y,X|λ)p(λ)dλ∫
p(y|λ2)p(λ2)dλ2 ·

∫
p(X|λ1)p(λ1)dλ1

(6)

where the numerator evaluates the likelihood of the evi-
dence (y and X) coming from asingle class, while the
denominator evaluates the likelihood of they coming from
a differentclass to that ofX (this difference is emphasised
by the subscriptedλ).

Assuming independence of the training and test data
and utilising Bayesian incremental learning (Duda, Hart,

and Stork 2001), (6) can be expressed as

B10 =
∫

p(y|λ2)p(λ2|X)dλ2 ·
∫

p(X|λ1)p(λ1)dλ1∫
p(y|λ2)p(λ2)dλ2 ·

∫
p(X|λ1)p(λ1)dλ1

=
∫

p(y|λ)p(λ|X)dλ∫
p(y|λ)p(λ)dλ

(7)

In this paper, the factor in (7) is used as the criterion for
verification. Although this Bayes factor requires integration
over the entire parameter space (comprising thousands of
dimensions in the high-order GMM case), a method for ef-
ficiently calculating an approximation is presented in Sec-
tion 3.1..

2.1. Modelling the null hypothesis

From (6) it can be seen that we are in fact evaluating
a ratio of likelihoods as our verification criterion although
it is not the familiar likelihood ratio commonly used in
speaker verification systems. Of particular note is the dif-
ference in the modelling of the null hypothesis.

The Bayes factor approach outlined above elegantly re-
moves the issue of modelling the background population
that has been a significant issue in the history of speaker
verification research. Early in this history the background
population, represented in the denominator of the likeli-
hood ratio, was ignored and verification decisions were
based solely on the likelihood of the claimant’s model pro-
ducing the test utterance; the particular words spoken and
the acoustic environment of the recording were significant
sources unwanted variability in these scores. To reduce
these dependencies, a cohort of background speakers were
introduced and combined to model a background popula-
tion in the denominator (Rosenberg, Delong, Lee, Juang,
and Soong 1992). This approach raised the question of
choosing an appropriate set of speakers to form this cohort:
Should the cohorts be near, far or evenly distributed? How
many cohort speakers are required?

The introduction of the universal background model
(UBM) and Bayesian adaptive model estimation (Reynolds
1997) allowed for more detailed and robust models while
replacing the background cohort with a single model. The
UBM in this approach plays a dual role by providing a prior
distribution for the claimant model parameters and a “rest
of the world” model as the denominator of the LRT.

The Bayes factor approach presented in this paper re-
moves this dual role of the UBM as it is used solely for
providing a prior distribution for model parameters. It is
simply unnecessary under this approach to provide a model
for “all other speakers;” the denominator of the ratio in (6)
evaluates the likelihood of adifferentmodel to the claimant
producing the test utterance. In this way the Bayes factor
is capable of evaluating the evidencein favour of the null
hypothesis, rather than introducing a model to represent a
background population.

3. Speaker verification using Bayes factor
scoring

This section describes the incorporation of Bayes factor
scoring into an existing speaker verification system (Pele-
canos and Sridharan 2001) based on the GMM-UBM struc-
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ture (Reynolds 1997). Section3.1. derives the Bayes fac-
tor scoring criteria for Gaussian mixture models and Sec-
tion 3.2. extends this derivation to compensate for a highly
correlated feature set. Section3.3. describes some of
the practical implementation issues and efficiency improve-
ments used in this research.

3.1. Bayes factor scoring for GMMs

To evaluate Bayes factors for GMMs it is necessary to
evaluate the Bayesian predictive density (5) that is of the
form

p(X|H) =
∫

p(X|λ)p(λ)dλ (8)

with the model density function given by

p(X|λ) =
T∏

t=1

N∑

i=1

wig(xt|µi,Σi) (9)

with the constraint of diagonal covariance matrices

g(x|µi,Σi) =
D∏

d=1

1√
2πσ2

id

exp
{
− (xd − µid)2

2σ2
id

}
(10)

Following from common practice in MAP adaptation of
GMMs and supporting experimental evidence, only the
component Gaussian means are considered for adapta-
tion in this work. Consequently the prior distribution for
λ = {µ1, µ2 . . . µN} is (Gauvain and Lee 1996)

p(λ) =
N∏

i=1

g(µi|Θi) (11)

whereΘi = {τi,mi} are the set of hyperparameters with
τi > 0 andmi is aD-dimensional vector andg(µi|Θi) is
given by

g(µi|Θi) =
D∏

d=1

√
τi

2πσ2
id

exp

{
−τi (µid −mid)

2

2σ2
id

}

(12)
Jiang and Deng (2001) approximate the solution of (8)

by performing the Viterbi approximation ofJiang, Hirose,
and Huo (1999), effectively assigning each sample to a sin-
gle component Gaussian. In contrast, we adopt an incre-
mental approach by updating the model prior density af-
ter each observation using incremental Bayesian learning.
Hence, (8) simplifies to the iterative evaluation of

p(X|H) =
T∏

t=1

∫
p(xt|λ)p

(
λ|X(t−1)

)
dλ (13)

whereX(t−1) = {x1, x2 . . . xt−1} is the set of obser-
vation vectors precedingxt. Under this interpretation,∫

p(xt|λ)p
(
λ|X(t−1)

)
dλ simplifies to a weighted sum of

integrals over the component Gaussians,

∫
p(x|λ)p(λ|X)dλ

=
M∑

i=1

wi

∫
p(x|µi)p(µi|X)dµi (14)

where
∫

p(x|µi)p(µi|X)dµi =

D∏

d=1

√
τi

2πσ2
id(τi + 1)

exp

{
−τi (xd −mid)

2

2(τi + 1)σ2
id

}
(15)

The prior distributionp
(
λ|X(t−1)

)
can be determined

with an incremental update approach. The update equations
for the prior distribution hyperparameters are equivalent to
the MAP update equations for GMMs for a single observa-
tion

τ ′i = τi + P (i|x) (16)

m′
i =

τimi + P (i|x)x
τi + P (i|x)

(17)

whereτ ′i andm′
i are the updated hyperparameters after ob-

servingx and

P (i|x) =
wig(x|µi,Σi)

p(x|λ)

is posterior probability of mixture componenti producing
the observation. From the above equations, it can be seen
that Bayes factor scoring can in fact be implemented as
incremental MAP adaptation while scoring with adjusted
variances to compensate for uncertainty in the component
means. It should be noted that both hypotheses are evalu-
ated in this fashion.

3.2. Test frame weighting

Acoustic features commonly used for speaker verifica-
tion, such as MFCCs, exhibit high levels of correlation be-
tween consecutive observation frames. This is essentially
by definition, considering that the short-term spectra and
cepstra typically calculated for consecutive frames share
two-thirds of their waveform samples and that delta cepstra
explicitly average over a number of frames.

This correlation obviously voids the commonly sited as-
sumption of statistically independent and identically dis-
tributed feature vectors. Although not stated explicitly,
much of the preceding discussion also invokes this assump-
tion which leads to overly confident adaptation during the
Bayes factor scoring process. Particularly in the case of
extreme mismatch, such as mismatched telephone handset
types, this ultimately leads to degraded performance.

To prevent over confident adaptation during scoring a
frame weightedadaptation can be employed. Adding a
weighting factorβ to the update equations (16) and (17),
we have

τ ′i = τi + βP (i|x) (18)

m′
i =

τimi + βP (i|x)x
τi + βP (i|x)

(19)

where typically0 < β ≤ 1. Intuitively, β represents how
dependent each observation vector is from its predecessor;
a value of1 implies statistical independence and reducing
values indicate increasing correlation (and, consequently,
less information).
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3.3. Implementation

Several issues remain with respect to the practical im-
plementation of Bayes factor scoring within a speaker ver-
ification system.

Firstly, the discussion above does not mention the ini-
tial values for the prior distribution hyperparameters,Θ =
{mi, τi|i = 1, 2 . . .M}. For all models the initial values
of the hyperparameters are the same; the prior means are
derived from the UBM (as is the case with MAP adapta-
tion) and allτi are set to the MAP adaptation “relevance
factor,” τ . For the numerator, these values are then updated
as a result of the speaker enrolment/training procedure; the
prior means become the MAP adapted means andτi is the
sum of the relevance factor and the probabilistic count for
mixture componenti. As a practical note, the probabilistic
counts determined from model training must therefore be
recorded.

Under this scheme, the speaker enrolment procedure
consequently has a slightly different interpretation as it
adapts the prior distribution hyperparameters to be speaker
dependentrather than estimating a speaker model directly.

For the denominator, the prior distribution hyperparam-
eters are left as their initial speaker independent values. An
interpretation of this is that, at the start of a test utterance
the denominator effectively representsno speaker in con-
trast to the usual interpretation of representing many un-
known speakers with a UBM. To be verified a claimant
speaker model has to bemore likethe test utterance than
no speaker as the speaker independent prior distribution
will adapt more rapidly toward the test utterance than the
speaker dependent prior.

Secondly, for efficient evaluation of the Bayes factor a
top-N scoring strategy is employed that works similarly
to the top-N expected log-likelihood ratio (ELLR) scor-
ing (Reynolds 1997). This also implies that only theN
highest contributing components of a model are updated by
an observation; a positive side-effect of this is the reduced
potential for numerical accuracy issues in the update step.
All experiments in this study useN = 10. It should be
noted that even withtop-N scoring Bayes factor scoring is
more computationally expensive than ELLR scoring due to
the extra effort in incrementally adapting the prior distribu-
tions.

4. Experiments
The recognition system used in this study utilises fully

coupled GMM-UBM modelling using iterative MAP adap-
tation and feature-warped MFCC features with appended
delta coefficients, as described byPelecanos and Sridharan
(2001). An adaptation relevance factor ofτ = 8 and 512-
component models are used throughout.

4.1. NIST 1999 experiments

For this evaluation, the NIST 1999 Speaker Recogni-
tion Evaluation database was used. (For further informa-
tion see (National Institute of Standards and Technology
2004).) This database is an excerpt of the Switchboard-
II Phase 3 telephone speech corpus including a collection
of 230 male and 309 female target speakers, each provid-
ing approximately two minutes of enrolment speech. There
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Figure 1:DET plot of NIST ’99 baseline results comparing
ELLR and Bayes factor scoring (β = 0.25) for the All,
Same and Different handset type conditions.

are a total of 57,310 trials of up to 45 seconds in length,
with 4,828 of these being target trials. Of particular inter-
est with this database is the emphasis placed on the levels
of mismatch represented. As well as overall performance,
our results are categorised into two subsets distinguished
by the level of mismatch;SameandDifferenthandset type
trials.1 In this corpus, the telephone handset type is either
electret or carbon-button transducer. A trial is categorised
asSametype if the training and testing segments were both
recorded on the same telephone type; representing mod-
erate mismatch.Different type trials are significantly more
mismatched with consequently poorer system performance.

Figure1 compares the detection error trade-off (DET)
curves of Bayes factor and ELLR scoring for the NIST
’99 data with equal error rate (EER) and minimum detec-
tion cost function (DCF) (Martin and Przybocki 2000) pre-
sented in Figures2 and 3 respectively. Improved perfor-
mance in the low false alarm region is attained with the
Bayes factor method, with reductions in the observed DCF
for all conditions; up to a 19.3% in theSamecase and 6.3%
overall. Mixed results were observed at the EER operating
point with improvements in theSamecondition and degra-
dations in theAll andDifferentcases.

The DET plots demonstrate a trend of a counter-
clockwise rotation of the Bayes factor curves compared to
ELLR scoring. Assuming Gaussian output score distribu-
tions, the observed reduction in DET curve slope would in-
dicate a proportional reduction in the ratio of standard devi-
ations of impostor to target trial score distributions termed
theσ-ratio (Navratil and Ramaswamy 2003). This was in-
deed observed with the Bayes factor scoring reducing the
σ-ratio by 5% overall

1The Different category corresponds directly to theDNDT
condition commonly used for the NIST ’99 corpus, however the
Samecondition combines theSNSTandDNSTconditions. This
approach was chosen to improve the clarity of plots and the mean-
ingfulness of the results presented.
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Figure 2: Minimum DCF values (×10−2) for NIST ’99
baseline results comparing ELLR to Bayes factor scoring
with varyingβ-values for the All, Same and Different hand-
set type conditions.
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Figure 3: EER for NIST ’99 baseline results comparing
ELLR to Bayes factor scoring with varyingβ-values for the
All, Same and Different handset type conditions.

It is also noted that the results indicate a reducing ef-
fectiveness of Bayes factor scoring as mismatch increases,
resulting in worse performance in theDifferent case com-
pared to standard ELLR. It is hypothesised that while the
Bayes scoring method is more effective than ELLR scoring
at discriminating between speaker classes, it is more ad-
versely affected by mismatched features. Figures2 and3
do, however, indicate the positive effect of incorporating
frame-weighted Bayes factor scoring (compared to the un-
weighted version withβ = 1), with β = 0.125 giving the
best Bayes factor results for both DCF and EER in theDif-
ferentcase. Overall aβ value of0.25 gives the most con-
sistent results.

Figures4 and 5 depict DET performance incorporat-
ing H-Norm and T-Norm (Auckenthaler, Carey, and Lloyd-
Thomas 2000). H-Norm provides a significant boost for
the Bayes factor method with an overall DCF improvement
of 11.8% and EER imprvement of 2.7% in favour of the
proposed method. The use of HT-Norm (Figure5) almost
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Figure 4:DET plot of NIST ’99 H-Norm results comparing
ELLR and Bayes factor scoring (β = 0.25) for the All,
Same and Different handset type conditions.
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Figure 5:DET plot of NIST ’99 HT-Norm results compar-
ing ELLR and Bayes factor scoring (β = 0.25) for the All,
Same and Different handset type conditions.

nullifies the differences between the methods, however the
Bayes factor approach has a small overall advantage in both
DCF and EER.

4.2. QUT EDT 2003 experiments

The Bayes factor approach was further evaluated and
compared using data from the NIST 2003 Speaker Recog-
nition Evaluation Extended Data Task (EDT) (National In-
stitute of Standards and Technology 2004). The evalua-
tion data is a subset of the Switchboard-II Phase 2 and 3
databases. This study aimed at examining the performance
of the approach in extended training scenarios. To mir-
ror the NIST 2004 evaluation conditions, the NIST EDT
’03 evaluation procedure was restructured to include three

Proceedings of the 10th Australian International Conference on Speech Science & Technology

Macquarie University, Sydney, December 8 to 10, 2004. Copyright, Australian Speech Science & Technology Association Inc.

Accepted after full paper review

PAGE 408



training length conditions: one, three and eight conversa-
tion sides. The training and testing lists for the new 1- and
3-side conditions were derived from the existing four con-
versation side lists. More impostor trials were also added to
the evaluation to better reflect the minimum DCF operating
region. We refer to this modified protocol as the QUT EDT
’03.
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Figure 6:DET plot of QUT EDT ’03 baseline results com-
paring ELLR and Bayes factor scoring (β = 0.25) for the
1-side, 3-side and 8-side training conditions.

The results for this task presented in Figure6 support
the results for the NIST ’99 corpus. The Bayesian scoring
method provided improved performance as measured by
the minimum DCF with 6.3%, 8.5% and 2.1% relative im-
provement in the 1-, 3- and 8-side training conditions with
degraded results at the EER operating point. These plots
also confirm the trend of counter-clockwise DET curve ro-
tation observed in the previous section.

It is clear however that the Bayes factor approach shows
decreasing usefulness as the length of training data is in-
creased. Undoubtedly this is due to the increased con-
fidence in the model parameter estimates that can be ex-
pected from these extended quantities of training data.

5. Conclusion
This study presented an application of Bayes factor

scoring to speaker verification. The general Bayesian ap-
proach to verification was reviewed, highlighting the abil-
ity of the approach to incorporate prior information into
the scoring process and to allow for uncertainty in model
parameters. It was then applied to the specific case of
Gaussian mixture models using a novel incremental learn-
ing derivation resulting in a drop-in replacement for ELLR
scoring.

Experiments conducted on the 1999 NIST Speaker
Recognition Evaluation corpus and an extended 2003 NIST
corpus demonstrated generally improved performance of
Bayes factor scoring over ELLR scoring particularly in bet-
ter matched conditions and in the low false alarm operating
region.
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