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Abstract 
This paper examines the use of John Bernard’s data set of male speakers of Australian 
English as a reference distribution for the practice of Forensic Speaker Identification 
in Australian contexts.  The Bayesian likelihood ratio-based discrimination is 
performed on recordings of eleven male speakers of Australian English, using the f-
patterns of F1, F2, and F3 of their five tense monophthongs /i/, /a/, /o/, /�/, and /�/. 
Target values for these formants and vowels of the speakers described as Broad or 
General by Bernard are used as the reference distribution for the analysis. The 
performance of the data set is evaluated using a Likelihood Ratio as discriminant 
function, and also by an examining of the strength of evidence generated. The analysis 
is performed using a relatively simple model, assuming normality of the reference 
sample and equal variance.  It is shown that the Bernard data function well, yielding 
strong strength of evidence. The results of the analysis are discussed with regard to 
the practice of FSI in Australia. 

1. Introduction 
The application of Forensic Speaker Identification (FSI) 
in the real world typically involves comparison of two 
speech samples.  The data for this comparison usually 
comprises samples of an unknown speaker, generally the 
alleged offender, and another known speaker, generally 
the suspect. This data may consist of recordings of 
telephone calls, police interview tapes, surveillance 
videos and the like.  The practitioner of FSI is usually 
asked to make some kind of statement regarding the 
similarities/differences between the two voices.  The 
proper evaluation of these similarities/differences in FSI 
is optimally performed using a Bayesian framework, 
with the evaluation of evidence presented in terms of a 
Likelihood Ratio (Rose, 2002, 2003; Champod and 
Meuwly, 2000; Aitken, 1995).   

The Likelihood Ratio is a measure of the strength of 
evidence supporting one of two competing hypotheses.  
This is not the same as providing a statement of the 
probability of the hypothesis given the evidence; this 
requires access to prior odds not generally available to 
the analyst.  It is further not the place of the analyst to 
provide such a statement in a legal context, as this is the 
proper domain of the judiciary (Robertson and Vignaux 
1995).  The LR takes the form of a number expressing 
the ratio of the probability of evidence assuming one 
hypothesis, divided by the probability of evidence 
assuming the competing hypothesis.  This is shown at 
(1), where p represents probability, H a hypothesis of 
identity, HA a hypothesis in competition with H, and E 
represents the evidence under consideration. 
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In FSI, H is typically the prosecution hypothesis that the 
samples have been produced by the same speaker, and 
HA the defence hypothesis that the samples were 
produced by different speakers.  A LR greater than 1 
thus indicates a higher relative probability of the 
evidence given the prosecution hypothesis, and a value 
less than one the opposite.  The magnitude of the 
distance of the LR from 1 (unity) indicates how strongly 
the evidence supports one of the two hypotheses.   

Verbal equivalents of the strength of the LR often 
use Log10 as a base, such that a LR of 30 is not 
considered any stronger than a LR of 14 – it is at 100 
that the scale moves from moderate to strong support 
(González-Rodríguez, Ortega-García & Sánchez-Bote, 
2002: 174). In such a Log based representation of the 
LR, the threshold for discrimination also of course 
moves from 1 to 0, with different-speaker LRs expected 
to be negative values instead of fractions.  

In order to accurately assess the similarity of the two 
voices, as well as evaluate the strength of evidence 
supporting the different-speaker hypothesis, a sample 
representing the population must be produced, in order 
to evaluate just how typical of the different speakers in 
question the samples being analysed are.  Two samples 
may show remarkable similarity to each other, but this 
in itself is not sufficient to support the hypothesis that 
they were produced by the same speaker. It must also be 
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evaluated just how typical this feature is in the relevant 
population.  If it is very common to have such a feature 
in the population the similarities between the samples 
become less supportive of the same-speaker hypothesis.   

A problem in the application of FSI in Australian 
contexts, indeed in most contexts, is the scarcity of 
adequate background populations for evaluation of 
similarity and typicality in acoustic forensic phonetic 
parameters.  In the late 1960s John Bernard collected 
and analysed the speech of 170 male speakers of 
Australian English (AE), in terms of the first three 
formants for the vowels of AE (Bernard, 1970, 1989).  
The speakers were also categorised according to one of 
the three accent types proposed by Mitchell and 
Delbridge (Mitchell and Delbridge 1965).  This means 
that the data set is potentially useful for a number of 
different variations of the different-speaker hypothesis 
based on accent descriptions (such as different speaker, 
different broad speaker, etc.).   

The testing of the data set provides an empirical 
foundation for the use of the data set in real forensic 
situations, in accordance with criteria of scientific 
robustness necessary after Daubert for scientific 
evidence presented in a forensic context (Black, 
Francisco, and Saffran-Brinks, 1994).   

The first aim of the experiment in this paper is 
therefore to test the Bernard data set to evaluate its use 
in the actual application of FSI in Australia.  This is 
performed using target values for the first three 
formants of the /tense monophthongs/ of AE as 
recorded by Bernard. 

The second aim of the experiment is to test the 
performance of the F-patterns for the first three 
formants of the /tense monophthongs/ for speaker 
discrimination.  These aims are carried out using speech 
from 11 male speakers of AE, aged between 18 and 26.   

In order to evaluate the performance of the set, both 
magnitude of LRs and also the LR as a discriminant 
function are examined.   

This paper will show that not only is the Bernard 
data set usable for FSI of male speakers of AE, but that 
the distribution of results is of a type which is useful in 
legal contexts, in that different-speaker pairs are 
discriminated much better than same-speaker.  This 
means that while the frequency of same-speaker 
determinations is somewhat low, there are very few 
false positives.  In practice, this means that it is less 
likely to obtain a result which would provide support 
(erroneously) that same-speaker production of the 
speech samples is involved, and thus perhaps contribute 
to an innocent person being found guilty by the court. 

2. Procedure 
The experiment uses data collected for the experiments 
conducted in Alderman (2004).  This comprises 
recordings of eleven male speakers of AE, aged between 

18 and 26. Two of the speakers were identical twins. 
Tokens of the tense monophthongs were collected in a 
controlled environment, with the vowels elicited in a 
/h_d/ context, in a stressed sentence-final position (such 
as “that wasn’t very hard”, for /a/).  Whilst this method 
of elicitation has some shortcomings in conforming to 
the criterion for optimal speech samples used in FSI 
analysis (Rose, 2002), it does provide a nicely 
comparable structure to the Bernard data, in controlling 
for the effect on F-pattern of the perivocalic segments, 
which is useful at this stage of determination of 
suitability of the Bernard set for FSI. 

Two recording sessions for each speaker were 
conducted, with twelve tokens of each vowel elicited in 
each recording session.  The recordings were separated 
by at least two weeks, to introduce the necessary within-
speaker variation which is a feature of naturally 
occurring speech, and also a crucial desideratum for FSI 
experiments of this kind (Rose, 2002). 

2.1. The Normal Approach 

There is more than one method for calculation of the LR 
using continuous acoustic parameters such as formants.  
Both have strengths and limitations, and this varies 
depending on the structure of the data available for use 
as a background sample.  The first of these assumes 
normality in the distributions of the variables, and 
makes use of the mean and standard deviation of the 
sample.  There are a number of variants of this formula, 
but Lindley (1977) derives one such version, which also 
– rather unrealistically for speech - assumes equal 
variance for both samples.  This formula is shown at 
(2). 
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The second method of estimating a LR – by kernel 
density - is capable of modelling non-normal 
background distributions, but requires accurate 
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estimation of within-speaker variance for a reliable LR 
calculation.  The Bernard data comprises only two or 
three tokens for any given vowel for any given speaker.  
This results in poor estimation of the within-speaker 
variance.  Although Alderman (2004) found this method 
promising, the difficulty in accurate estimation of the 
within-speaker variance remains a problem. 

Additionally, the formula given at (2) was found in 
Alderman (2004) to provide better discrimination for 
some combinations of parameters.  The formula given at 
(2) was used in the calculation of the LRs for this 
experiment.  This model does still assume independence 
of the parameters, which has not been established for 
this data.  This is because whilst theoretically this may 
bias the generated LR, this is an empirical test to see 
which formants, and combinations of formants provide 
the best performance for the practice of FSI in 
Australia.  It was thought useful to at least examine the 
results of such combinations. 

2.2. The Experiment 

The two non-contemporaneous recordings of the eleven 
speakers give eleven same-speaker comparisons and 
220 different-speaker comparisons. LRs were calculated 
for F1, F2, and F3 of each of the tense monophthongal 
phonemes /i/, /a/, /o/, /�/, and /�/, providing 15 
individual LRs for each speaker pairing for analysis.  
Combinations of LRs were calculated to find the best 
performance in terms of discriminating between same-
speaker and different-speaker pairs.  The LRs for those 
combinations of parameters found to perform speaker 
discrimination most successfully were then examined in 
terms of the magnitude of support they provided for the 
hypothesis. 

For the purposes of this experiment, based on 
arguments and observation of variation in realised 
accent by social context and other factors (Horvath, 
1985; Cox and Palethorpe 1998), a combination of the 
data from the Broad and General speakers of the 
Bernard data set was used.  Different combinations are 
possible based on different defence hypothesis 
formulations, but the Broad and General combination 
was found to be most representative of the eleven 
speakers recorded for the test, and also to provide 
optimal results compared with other combinations.  This 
provides 118 speakers with 2 or 3 tokens per speaker 
(this varies by vowel) for the reference distribution.    

3. Results 
Table 1 presents the results of the experiment for the 
individual LR calculations, for F1. The vowel is listed in 
the top row. The figure in the SS row is the percentage 
of correct same-speaker comparisons out of the eleven 
same-speaker pairings.  The DS row lists the percentage 
of correct different-speaker comparisons out of the 220 

different-speaker pairings. The LRtest is a crude way of  
quantifying the strength of evidence (the results) 
supporting the hypothesis that a same-speaker pairing 
will be resolved with a LR greater than 1, compared to 
the hypothesis that a different-speaker pairing will be 
resolved with a LR>1.  It is thus a ratio of the 
conditional probabilities p(LR>1 | SS)/p(LR>1 | DS) - 
the number of correctly discriminated same-speaker 
pairings to the number of incorrectly discriminated 
different-speaker pairings.  The LRtest values have been 
rounded to 1 decimal place. 

Table 1: LR results for F1 

F1 /i/ /a/ /o/ /�/ /�/ 
SS 45.45% 72.73% 45.45% 36.36% 63.64% 
DS 67.73% 75.91% 70.91% 66.36% 76.82% 

LRtest 1.4 3.0 1.6 1.1 2.7 
 
Thus, it can be seen that for F1 in /i/, 45.45% of the 
same-speaker comparisons (5 out of 11) were correctly 
discriminated with a LR>1, whilst 67.73% (149) of the 
220 different-speaker pairings were correctly 
discriminated with a LR<1.  This gives a LRtest value of 
(45.45/(100-67.73)) 1.4.  One would be therefore 1.4 
times more likely to get a LR bigger than unity for F1 of 
/i/ assuming that the pairing actually is the same-speaker, 
than if they were different speakers.  This would of 
course constitute effectively useless evidence, since it 
shows that one is almost as likely to get the difference 
between the samples assuming that they were produced 
by the same speaker as assuming they were produced by 
different speakers.   

The results for F1 show only limited same-speaker 
discrimination, with different-speaker pairings being 
better resolved than same-speaker for F1 of any of the 
five vowels.  This is fairly typical for tests using such a 
model.  This may have to do with limits on identity, 
whilst difference is theoretically less limited; that is, 
while things can only ever get as close to identical as 
identical, the degree of difference between samples can 
be much greater. 

For the five vowels tested, for F1, /a/ and /�/ 
exhibited the highest correct resolution of both same- 
and different-speaker pairings.  This is just below 73% 
for /a/ for same-speaker comparisons, and nearly 76% 
for different-speaker.  This results in a LRtest of 3 – one 
would be three times more likely to get the observed 
difference between the samples assuming same-speaker 
provenance.  /�/ performs nearly as well for SS pairings 
(63.64%), and slightly outperforms /a/ for the DS 
pairings (with 76.82%).  This gives us an LRtest for /�/ 
of 2.7.   

These are good results, as, of vocalic F1, it is values 
of /a/ and /�/ that are most likely to be useful in FSI in 
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the real world.  This relates in part to the fact that much 
of the data used in FSI comparisons comprises 
recordings of intercepted telephone conversations.  The 
use of telephone recordings for FSI can be problematic, 
due to interference, poor line quality, and importantly, 
the band-pass filter systems used in telephone systems 
(Künzel, 2001: 87-89, 93-96; Rose, 2003: 5101-5113).   

This filter effectively distorts information occurring 
below ca. 500 Hz and above ca. 3 kHz, meaning that for 
much data F1 (which for a male often falls below this 
threshold) is, often, an unreliable parameter to use for 
analysis.  /a/ and /�/, out of the five vowels tested, 
display the highest F1 values, typically above this 500 
Hz threshold, meaning that not only do they perform 
best of the F1s in this empirical examination, but they 
are also the most likely to be usable in the real world 
practice of FSI, as the values are within the range of 
frequencies not distorted by the band-pass filter system. 

Table 2 presents the results of the LR analysis 
conducted on F2 of the five vowels.  Here we can see 
better performance across vowels, with a minimum 
LRtest of 1.7 for /o/.  /o/ is also the vowel with the lowest 
resolution of DS pairings, at 68.64%.  Again, /a/ and /�/ 
show best results for individual vowel LRs, with LRtest 
values of 5.2 and 4.1 respectively. DS pairings are, for 
F2 of all five vowels, better resolved than the SS 
pairings, with /a/ showing the minimum distance 
between the DS and SS rates of correct discrimination 
(81% SS, and 84% DS).  /�/ performs nearly as well as 
/a/, with a slightly lower LRtest value of 4.1.  The reason 
for this is unclear, although it should be noted that F2 of 
/i/ and /�/ perform approximately as well as  /a/ and  /�/ 
performed using F1.   

Table 2: LR results for F2 

F2 /i/ /a/ /o/ /�/ /�/ 
SS 45.45% 81.82% 54.55% 63.64% 72.73% 
DS 82.73% 84.55% 68.64% 77.27% 82.27% 

LRtest 2.6 5.2 1.7 2.8 4.1 

 
Table 3 presents the percentage of correct SS and DS 
resolutions using F3 of the five vowels.  The only two 
vowels which show a DS resolution of over 80% are /i/ 
and /o/, which do not perform so well for F1 or F2.  F3 
of /�/ does show a nearly 82% correct SS discrimination 
rate, equal to the highest SS discrimination looking at 
any other individual parameters. 

Table 3: LR results for F3 

F3 /i/ /a/ /o/ /�/ /�/ 
SS 36.36% 36.36% 54.55% 63.64% 81.82% 
DS 80.45% 66.82% 80.45% 60.91% 67.73% 

LRtest 1.9 1.1 2.8 1.6 2.5 

A benefit of the LR approach is that it makes combining 
evidence easy (at least for uncorrelated variables). Since 
in FSI one is usually able to compare samples with 
respect to many variables, this is useful. In Table 4, the 
results of combining the LRs of different parameters 
together are shown (this is done by taking their product).  
This table shows a combination of all vowels F1, all 
vowels F2, all vowels F3 (so five parameters), then all 
vowels F1 and F2 combined (ten parameters), and 
finally all vowels for all formants combined together 
(fifteen parameters).   

Table 4: Results for some combined LRs  

 All F1 All F2 All F3 All 
F1&F2 

All 
F1,F2 
&F3 

SS 36.36% 54.55% 36.36% 45.45% 36.36% 
DS 96.36% 99.09% 94.09% 100 % 100% 

LRtest 10 60 6.2 n.d n.d 
 
It can be observed in Table 4 that the possible 
magnitude of the LRtest score increases when parameters 
are combined.  Using a combination of all vowels’ F2 
values results in a LRtest of 60, which is nearly twelve 
times as large as the highest LRtest using only a single 
parameter (5.2 for F2 of /a/). This is a useful result, as 
F2 is relatively unaffected by telephone bandpass (Rose, 
2003). The lowest value given for a combination of five 
parameters is for All F3, with a value of 6.2.  Note that 
this is still marginally larger than the highest LRtest for an 
individual parameter.  

There is no LRtest value given for a combination of 
all F1 and F2 LRs, or for all fifteen parameters 
combined.  This is because absolute discrimination of 
DS pairings was achieved using these two 
combinations.  As the LRtest is a ratio of correctly 
discriminated SS pairings to incorrectly discriminated 
DS pairings, this means that we have a denominator of 
zero (i.e. no incorrectly discriminated DS pairings), 
resulting in an undefined LRtest.   

This has some important implications for the 
application of FSI in Australian contexts using Bernard 
as a reference sample.  First of all it shows that formants 
can be used to forensically discriminate same- from 
different-speaker pairs. Another important consideration 
is that while same-speaker comparisons for the above 
combinations are  lower than for some of the individual 
parameters, this is balanced by the higher correct level 
of different-speaker comparisons.  This has 
consequences in terms of the actual application of these 
methods to real FSI case work in Australia, or indeed 
anywhere using a similar legal framework for criminal 
prosecution.  It can be seen to be more acceptable to 
provide evidence which may contribute to a guilty party 
being found not-guilty of an offence than to provide 
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evidence which (falsely) supports a prosecution same-
speaker hypothesis.   

At the same time, a method which cannot reliably 
generate an LR>1 for a SS pairing is not ideal – 
although as already mentioned that may be  the wall 
effect in comparing identical samples. A balance, 
whereby a maximum number of correct SS pairings are 
resolved with a LR>1, while maintaining a high level of 
DS pairings resolved with a LR<1, should be sought, 
perhaps by seeing what kind of variance ratio gives an 
EER at threshold.  Additionally, as the LRs are 
multiplied together, LRs making use of more parameters 
can have a theoretically larger magnitude LR. A 
secondary consideration in the combination is to 
maximise not only the DS and SS discrimination rate, 
but also the number of parameters in order to maximize 
the possible magnitude of the LR, and thus the strength 
of evidence supporting the hypothesis. This also 
provides some data to answer the secondary aim of the 
experiment, which is to examine the performance of the 
vowel F-patterns to see which are most useful and 
appropriate for actual FSI case work in Australia. Table 
5 presents results of optimum combinations of 
individual parameters to meet these criteria. 

Table 5: Optimum LR combinations using Bernard  

 
AllF2, 

/�/&/a/F1 

/�/&/a/F1 
/�/&/a/F2, 

/�/F3 

AllF2, 
/�/&/a/F1,  
/�/&/�/F3 

AllF2, 
/�/&/a/F1  
/o/,/�/& 
/�/ F3 

SS 63.64% 63.64% 63.64% 54.55% 
DS 99.55% 99.55% 99.55% 99.55% 

LRtest 140 140 140 120 
 
Four combinations of parameters are presented in Table 
5.  The first three resolve SS and DS pairings with the 
same degree of accuracy – 63.64% of SS pairings (7 out 
of 11), and 99.55% DS pairings correctly discriminated 
(219 out of 220). The first column represents a 
combination of all five F2 parameters and the LRs 
calculated using F1 of /a/ and /�/ (a total of seven 
parameters).  The second column uses the LRs for all 
three formants of /�/ in combination with the LRs for F1 
and F2 of /a/.  This is five parameters in all.  The third 
uses the same parameters as column 1, but includes LRs 
for F3 of /�/ and /�/, for a total of nine parameters.  The 
magnitude of the LRtest is here much larger than those 
given for any of the individual parameters, or those 
combinations listed in Table 4. This equates verbally to 
strong support for the LR>1 assuming SS hypothesis. 
The inclusion of the LRs for F3 of /o/ gives ten 
parameters; this is presented in the last column.  Note 
the lower rate of SS discrimination, which lowers the 
LRtest (which still equates to strong support).   

One method of graphically expressing both the 
magnitude of LRs calculated, and the relative 
performance of the SS and DS pairings is cumulative 
distribution functions (Drygajlo, Meuwly, and 
Alexander, 2003).  Figure 1 presents the cumulative 
distribution functions of the Log10(LR) values for the 5 
(F1 & F2 in /a/, and all three formants in /�/) and 9 (all 
vowels’ F2, F1 in /�/ & /a/, and F3 in /�/ & /�/) 
parameter combinations presented in Table 5.  The 5 
parameter combined LRs are shown in the left panel, 
with the 9 parameter LRs shown on the right.  Each 
panel also shows the equal error rate for the test 
(labelled EER). Log10(LR)s are shown along the x axis, 
with percentage of sample shown on the y axis.  

Figure 1: Cumulative Distribution Function of 
Log10(LR) values for two optimal combinations 

of parameters. 

In both panels the DS curve shows almost 100% of 
cases correctly discriminated at the threshold for the 
discrimination (0 in this case due to log transformation), 
with more than 75% of DS pairs being resolved with a 
Log10(LR) < -25 for the nine parameter distribution 
function.  SS pairings can be seen for both plots to have 
at least half of the curve on the positive side of the 
discrimination threshold. Note also the much larger 
magnitude of DS LRs than SS for both sets of LRs 
shown in Figure 1.   

The maximum magnitude of SS Log10(LR) is given 
by the nine parameter combination (column 3 of Table 
5) – a value of 7, compared to -150 for the DS pairing 
with largest magnitude of DS Log10(LR).  This can be 
verbally expressed as very strong evidence to support 
the same-speaker hypothesis (this would be achieved 
with a Log10(LR) greater than 3).  The possible strength 
of evidence supporting the different-speaker hypothesis 
in the case of the DS pairings (with Log10(LR)s of to a 
magnitude of -150) can be seen to be even stronger than 
this, although there is not another category of strength 
above very strong in the verbal scale used here 
(González-Rodríguez et. al, 2002). 
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4. Conclusion 
The first aim of the experiment was to test the Bernard 
data set to evaluate its use in the actual application of 
FSI in Australia. The Bernard data has been shown to 
function well as a reference sample in Bayesian LR-
based speaker discrimination and yields strong evidence 
using formants for FSI involving male speakers of AE. 
The collection of cultivated speakers will allow for 
further testing of accent type groupings of the Bernard 
data.  The collection of a modern data set to compare 
results is another avenue for future investigation in this 
area; Cox (1999) provides data that may be useful for 
such a comparative test, though it is limited to speakers 
of General AE.   

The LRtest values show that some combinations of 
the parameters can result in strong support for the 
hypothesis that the test can be used to successfully 
discriminate speaker pairs for male speakers of AE.   

The second aim was to test the performance of the 
F-patterns for the first three formants of the /tense 
monophthongs/ of AE. Of the three formants, F2 was 
found to perform best in speaker discrimination, both 
for the individual vowels and for the combined LR 
given for a combination of all vowels for each formant, 
with F1 of /a/, and all formants of /�/ also resolving 
speaker pairings relatively well.  For almost all 
parameters or combinations of parameters, different-
speaker pairings are resolved more successfully than 
same-speaker pairings. 

For the three combinations of LRs found to give 
strongest support for the LR as a discriminant 
hypothesis, a combinations of 9 parameters - all five F2 
LRs, in combination with F1 in /a/ and /�/, and F3 in 
/�/&/�/ - was found to provide the strongest strength of 
evidence to support a hypothesis of same-speaker 
production of the two samples being compared (i.e. high 
magnitude LRs).   
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