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Abstract
The discriminant performance of a likelihood ratio based on a two-level
multivariate model is examined on the speech of 60 male Japanese speakers using
non-contemporaneous telephone recordings over uncontrolled channels. The
performance is determined for both F-pattern centre frequencies and LPC cepstral
coefficients, extracted from three very different phonetic segments only: a vowel,
a voiceless fricative and a nasal. The Multivariate Likelihood Ratio is shown to
perform well in discriminating same- from different–speaker pairs, yielding
strength of evidence that can be characterised as moderate for F-pattern and, at
the least, very strong for the cepstrum. Comparison is made using the same data
analysed with a so-called “independence” or “Idiot’s Bayes” LR approach, which
ignores correlation between variables. It is shown that, as commonly found, the
Idiot’s Bayes approach outperforms the MVLR. The consequences of this finding
for forensic speaker identification are alluded to.

1. Introduction
In the real world, Forensic Speaker Identification (FSI) as
a prosecutional tool typically involves the comparison of
one or more samples of an unknown voice with one or
more samples of a known voice. In the vast majority of
cases, samples are recordings intercepted from the
telephone, both landline and cellular. Often the unknown
voice is that of the individual alleged to have committed
an offence, and the known voice belongs to the suspect.
The court wants to determine whether the two samples
have come from the same person or not, and thus be able
either to identify the suspect as the offender or exonerate
them. However, practitioners in many different fields of
forensic identification are becoming increasingly aware of
the fact that (however much the court may desire
otherwise) it is logically not possible to quote the
probability of the hypothesis given the evidence (Aitken
and Taroni 2004, Robertson & Vignaux 1995). Applied to
FSI this means that it is not possible to say, for example,
that one is 80% sure that the samples have come from the
same speaker, given the similarities between them (Rose
2002, 2003). Given that this message was first enunciated
in Lewis’s (1984) paper, and is established practice in
some major areas of forensic identification, for example

using DNA, its application in FSI is taking some time to
propagate.

The reasoning for why the expert cannot logically
quote the probability of a hypothesis, given the evidence,
applied to FSI, is as follows (Rose 2004). 1) The court,
and the Law, is faced with decision making under
uncertainty – it wants to know how certain it is that the
incriminating speech samples have come from the
defendant. 2) Probability can be shown to be the best
measure of uncertainty (Lindley 2002). 3) Therefore it is
necessary to evaluate how much more likely the evidence
- i.e. the differences/similarities between the speech
samples - shows the defendant to have produced the
incriminating samples than not to have produced them.
This is shown by the ratio of conditional probabilities at
(1), where H = prosecution hypothesis that the
incriminating speech samples come from the defendant;
~H = defence hypothesis that the samples come from
someone else; E = evidence (similarities/differences
between the offender and defendant speech samples).

                               p(H | E) / p(~H  | E)                          (1)

If this ratio exceeds some previously determined value –
beyond reasonable doubt or the balance of probabilities
for example – the defendant is found to have produced the
samples. 4) The solution to (1) is given by Bayes’
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theorem, the odds form of which (which is more
convenient to work with) is given at (2).

o(H | E) = o(H) * p(E | H) / p(E | ~H)             (2)

In words: posterior odds in favour of hypothesis = prior
odds in favour of hypothesis * Likelihood Ratio). 5) The
FSI expert is normally not privy to the prior odds o(H). 6)
Therefore they cannot logically evaluate a posterior. 7)
However, the expert can estimate the strength of the
evidence in favour of the same-speaker hypothesis by
estimating the likelihood ratio – the ratio of the probability
of the evidence assuming samples have come from same
speaker to the probability of the evidence assuming the
samples have come from different speakers: that is their
proper role, and this paper is about estimating Likelihood
Ratios from speech for forensic purposes.

Since values of the LR greater than one indicate same-
subject data, and values less than one indicate different-
subject data, it can be treated as a potential function for
discriminating same-subject from different-subject data.
The extent to which the LR can do this reflects both the
discriminability of the evidence and the method of
evaluating the LR, although it is not easy to separate these
factors. Such testing is vitally important, given that the
well-known Daubert (1993) rulings on the admissibility of
scientific evidence include as one criterion whether the
theory or technique can be and has been tested (Black et
al. 1994: 783ff) - and in Federal and State Australian
courts the practice notes requiring reliability, replicability
and transparency on the part of expert testimony are de
facto adoptions of Daubert.

The ability of the LR to discriminate same-subject
from different-subject data has to date been successfully
tested on several different types of forensically common
evidence, including DNA (Evett et al. 1993: 503);
elemental ratios in glass fragments (Aitken & Lucy 2003,
Aitken et al. Ms.; and speech: Meuwly & Drygajlo (2001:
150) have investigated Swiss French; Gonzalez-Rodriguez
et al. (2004) Spanish, Nakasone & Beck (2001) American
English, and van Leewen & Bouten (2004: 81-82) report
impressive results on authentic forensic Dutch data.

Both empirical and analytical approaches are used to
estimate LRs. The former is used in automatic FSR; this
paper uses the latter. Previous analytical approaches
(Kinoshita 2001, 2002; Rose et al. 2003; Alderman 2004),
were based on Lindley’s (1977) LR formula, which,
despite its credible performance, remains primitive in not
conforming to several important characteristics of speech
(Rose et al. 2003). In particular the formula assumes that
the variables in question (formant centre frequencies,
cepstral coefficients) are normally distributed and have

equal variance; and the approach also assumes that the
variables are independent (i.e. are not correlated). None of
these is of course necessarily true for speech. Approaches
which do not control for correlations often go by the
unflattering monikers “Idiot’s”, “Simple” or “Naïve
Bayes” (Hand & Yu 2001: 386), although “Independence
Bayes” is perhaps more neutral. The aim of this paper is to
examine whether improvements in discriminatory power
result from the use of a more sophisticated LR formula
which is able to take into account potential correlation
between variables.

2. Procedure
The same data were used as in Rose et al’s (2003)
experiment on Japanese (q.v), and comprised telephone
recordings from two non-contemporaneous sessions,
separated by ca. three to four months, of 60 male Japanese
speakers from several different prefectures. Recording
was made centrally, on the same equipment, from landline
telephone calls, but there was no requirement for any
speaker to use the same handset, so essentially the channel
was uncontrolled. Three very different phonetic segments,
in various words, were identified for each speaker using
dynamic programming (Osanai et al. 1995). These were 1)
the syllable-coda nasal consonant /N/ (which varies
mostly between [] and [N]), e.g. in the word san three; 2)
the voiceless alveopalatal fricative [] e.g. in the word
moshimoshi hello, and 3) the long back mid-rounded
vowel [], e.g. in the word ginkoo bank. The three sounds
are referred to below as “N”, “sh” and “oo” respectively.
There were twenty tokens each of “sh” and “oo”, and
fourteen of “N”, in each recording session. F-pattern
centre frequencies (surprisingly, the Japanese phone
transmission appeared to allow extraction of F1 through
F5!) and 12th order LPC cepstral coefficients were
automatically extracted from each token of each phonetic
segment.

3. Multivariate Likelihood Ratio
The multivariate likelihood approach used in this paper
was developed as a solution to the non-trivial problem of
estimating the strength of evidence when predictor
variables may be correlated.  It treats the variables for
which a LR has to be estimated – for example a set of
measurements of frequencies for different vowel formants
- as multivariate data (Aitken & Lucy 2003). The
approach accommodates two levels of variance: between-
and within-subjects, and is thus somewhat unrealistic for
speech, where at least a third level of variance – between
non-contemporaneous sessions – must usually be
assumed. The variables’ distributions can be modelled
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either with normal curves or kernel densities. The former
option was used, since the variables did not, upon
examination with the "R" statistical package, appear to
depart from normality to an extent that warranted kernel
density modelling. The Japanese formant and cepstral data
were examined for correlations, and were found to differ
considerably.  The formants were basically uncorrelated
between speakers, and for within sounds, were
uncorrelated both within and between. In stark contrast,
the cepstral coefficients were correlated between-speaker,
sometimes highly.

The formula for the multivariate-normal LR is derived
in Aitken & Lucy (2003), where it simplifies to the
expression at (3).

4. Experiments
The 60 speakers and two non-contemporaneous recording
sessions gave 60 same-speaker pairings and 1770
different-speaker pairings, and LRs were calculated for
each of these pairings. Separate LRs were calculated using
the MVLR approach for the F-pattern and for the
cepstrum, and both for the individual sounds and for the
three sounds combined.

5. Results
Figure 1 presents the results of the experiment using so-
called reliability functions/Tippett plots - a method of
representation now common in forensic ASR (e.g.
Drygajlo et al. 2003; Gonzalez-Rodriguez et al. 2004).
Results for the comparison with formants are given on top
and for the cepstrum on the bottom (note that very
different horizontal scales are used for these two features).
Plots for the three individual segments are given on the
left, and for all three segments combined on the right.
Thus in the top right panel of figure 1 it can be seen that,
with formants, there is about a 90% chance of getting a
log10(MVLR) value greater than -5 assuming that the
samples come from the same speaker, compared to a 20%

chance of log10 (MVLR)
> -5 assuming that the
samples come from
different speakers. Thus
one would for example
be ca. (90%/20% =) 4.5
times more likely to
observe a Log10 (MVLR)
value of at least -5
assuming that the
samples had come from
the same rather than
different speakers. This
would count as “limited”
evidence for the

prosecution in terms of the values proposed for use in the
British Forensic Science Service (Rose 2002: 61).

 There is inevitable error in LR estimation (Royall
2000), and Tippett plots address this problem. They can be
used as a kind of meta-LR to evaluate the specific
estimated LR in a case, by showing the court how much
more likely it is to observe LRs greater than that obtained,
assuming the same-speaker hypothesis. A quantification
of the results in terms of the LRtest value is also given in
each panel. The LRtest is the Tippett evaluation for the
obtained LR at threshold: p(LR>0|SS) / p(LR>0|DS). So
for example the top right panel shows that, by using
combined formant data from all three segments, ca. 55%
of the 60 same-speaker pairs had log10(MVLR) greater
than the threshold of 0, whereas only a very small
percentage of the 1770 different-speaker pairs (actually
1.8%) exceeded threshold. Thus one would for example
be about (55/1.8 =) 30 times more likely to observe a
log10(MVLR) greater than 0 assuming that the data had
come from a same-speaker rather than a different-speaker
pair.

The results are typical in showing relatively bad
resolution for same-speaker samples compared to
relatively good resolution of different-speaker samples.
This is presumably to be referred, at least in part, to the
fact that two samples can not get any more similar than
identical, (and under these circumstances the magnitude of
the LR can not increase substantially because it is
governed by terms like the variance ratio and number of
items being compared which do not show large
differences between samples) whereas there is no clear
limit on how different two samples can get. Nevertheless,
from the equal error rates of 13.5% and 7.5% quoted in
figure 1 it is clear that the MVLR approach has some
discriminating capability (although it is important to point
out that in experiments like this the EER does not have
any special status, since the threshold of 0 or 1 is actually
predetermined by the use of the LR as a discriminant
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U = Within-group covariance matrix, C = between-group covariance matrix,
n1, n2 = number of replicates in offender and suspect samples
H2 = (y*- µ)T ((U /( n1+ n2)) + C )-1 (y*- µ) , H3 =  (y1 - y2) T (D1+D2)-1 (y1 - y2) ,
H4 = (µ - µ*)T [(D1+C)-1 + (D2+C)-1] (µ - µ*) , H5 = (y1 + y2)T (D1+D2+2C)-1(y1 - y2) ,
y* = (n1y1 +  n2y2) / (n1 +  n2) , µ* = {(D1+C)-1 + (D2+C)-1}-1 [(D1+C)-1 y1 + (D2+C)-1 y2 ]  ,
D1 = (1/n1) U , D2 = (1/n2) U
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function, and the focus of attention is on the strength of
evidence that can be achieved by such an approach.) Thus
it can be noted that with formants one is about 30 times
more likely to get a LR value greater than threshold
assuming that the samples have come from the same
speaker than not – this counts as “moderate” evidence in
support of the prosecution hypothesis. With the cepstrum
the strength of evidence is very much greater – in this case
infinitely so in fact, since different-speaker pairs are
absolutely discriminated with the MVLR approach. It has
already been pointed out that this is an advantageous
result from the point of view of avoiding incriminating
innocent parties (Aitken et al. Ms; Gonzalez-Rodriguez et
al. 2004: 84, 88). (It is worth noting that one does not, in
fact, need the “n” segment at all for this, since absolute
different-speaker discrimination can be achieved with just
“sh” and “oo”, as well as a concomitant improvement in
the same-speaker discrimination from 36.7% to 45%.)

The results in figure 1 thus show once again the clear

pattern of cepstral superiority already demonstrated in
Rose et al. (2003), with the cepstrum far outperforming
the F-pattern as a forensic parameter. The general
similarity in overall profile between the cepstral and
formant ogives reflects perhaps the fact that the formants
are the primary determinant of the overall spectral shape
modelled by the cepstrum.

As far as the results for the individual segments are
concerned, “oo” is particularly noteworthy. One would be
about 290 times more likely to observe a log10(MVLR)
value greater than 0 assuming that the “oo”s had come
from the same rather than from different speakers.  This is
also some (290/7 = ) 40 times greater than with the “oo”
F-pattern. The comparative results for the other segments
are not so spectacular, but nevertheless good: (86/5 = ) 17
times greater with “sh” cepstrum than with its formants,
and (52/5 = ) 10 times greater with “N” cepstrum. The
superiority of the cepstrum will not come as a surprise to
the automatic speech community, but may be of interest
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Figure 1:  Tippett plots for results of discriminant tests. x axis = log10 (MVLR). y axis =  estimated probability. Vertical
line = threshold = 0 (right), & EER location (left). DS = different-speaker, SS = same-speaker. See text for explanation.
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since the results are derived from specific phonetic speech
segments, and not from a global approach which does not
distinguish segments. The results are also of course of
interest because they show that the acoustics of segments
can also have considerable evidentiary power in FSI.

The superiority of the cepstrum is clearly achieved by
its performance in discriminating different-speaker data  -
it generally does badly in discriminating same-speaker
pairs, which is one aspect in which the F-pattern is
consistently better – by about 10% to 20%.

6. Comparison with Idiot’s Bayes approach
The second aim of this paper was to see the effect of using
a more appropriate LR in FSI – one which was able to
take into account potential correlations between predictor
variables. In order to determine this, the data were
discriminated using an Idiot’s – or Independence – Bayes
approach, similar to that used in Rose et al (2003).  This
method used the LR formula derived in Lindley (1977),
and calculated the overall LR for a comparison as the
product of the individual LRs on the assumption that they
were independent. Thus there were (3 sounds * 5 formants
= ) 15 independent variables assumed in the formant
comparison, and (3 sounds * 12 CCs = ) 36 independent
variables in the cepstrum comparison. The results are
shown in figure 2, with the formants on the left and the
cepstral coefficients on the right. In each panel is
reproduced from figure 1 the Tippett plots for the MVLR
for the combined 3 segment data, compared with the
Tippett plots for the Idiot’s Bayes analysis.

It is readily apparent from figure 2 that the effect of  using
the Idiot’s Bayes approach is a dramatic leftwards shift in
both same-speaker and different-speaker ogives. As can
be seen, this actually improves the discrimination, from
the point of view of both the EER and the LRtest values.
The EER for the formants is now 8% compared to 13.5%
for the MVLR approach, and for the cepstrum it is 2%
compared to the previous 7.5%. The improvement in the
formant LRtest values is from 30.6 to 318. Neither LRtest
result is defined for the cepstrum and so they cannot be
compared.

Hand & Yu (2001:386 et pass.) point out that the
Idiot’s Bayes approach very frequently outperforms more
sophisticated analysis, and the results presented here seem
to constitute another example. We therefore have a
problem. Do we base our estimate of the strength of
evidence, and its associated LRtest, on what we know to be
deductively correct – that is, on the MVLR – or do we
base it on our practical ability to discriminate same-
speaker from different-speaker pairs – that is, on the
Idiot’s Bayes’ LR? At the moment I think it is best to
assume that the Idiot's result shows that the "correct"
formula is still not exploiting all the discriminablity in the
speech data. The Idiot's approach is still preferable,
therefore.

7. Summary

The two-level MVLR approach was tested on forensically
realistic Japanese speech data and found to perform
reasonably well in discriminating same- from different-
speaker pairs, although the better performance in
resolution of different-speaker pairs was again noted.  The
cepstrum considerably outperformed the formants, in
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Figure 2: Tippett plots comparing Multivariate (MV) and Idiot’s Bayes (IB) Likelihood Ratio discrimination. Left =
formants, right = cepstral coefficients. x axis = log10 (LR), y axis =  estimated probability. Vertical line = threshold  =
0 (right), IB EER location (left). See text for explanation.
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particular showing an absolute discrimination of different-
speaker pairs which lowers the possibility of false
positives.  An Idiot’s Bayes discrimination which did not
take any correlation between the variables into account
was shown to outperform the MVLR, which raises
problems in estimating the strength of forensic speaker
identification evidence.
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