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Abstract 

In this paper, a novel and noise robust front-end based on the combined 
application of spectral subtraction, spectral flooring and cumulative 
distribution mapping is proposed. Recognition experiments with the Aurora II 
connected digits reveal that the proposed front-end achieves an average digit 
accuracy of 81.46% for a model set trained from clean data and 89.54% for a 
model set trained from data with various noise conditions. With reference to 
the ETSI standard Mel-cepstral front-end, the proposed front-end obtains a 
relative error reduction of around 52% for the clean model set and 14% for 
the multi-condition model set. Moreover, it is observed that the use of a 
single fixed parameter to control spectral flooring is beneficial only when 
cumulative distribution mapping is also applied at a later stage of the front-
end processing. 

 

1. Introduction 

The state-of-the-art automatic speech recognition (ASR) 
systems work pretty well if the training and testing 
conditions are similar and reasonably controlled. 
However, under the influence of noise, these systems 
begin to fall apart and their accuracies become 
unacceptably low in severe environments (e.g. low 
signal-to-noise ratio). To remedy this noise robustness 
issue in ASR, various adaptive techniques have been 
proposed. A common theme of these techniques is the 
utilisation of some form of compensation to account for 
the effects of noise on the speech characteristics. In 
general, a compensation technique can be applied in the 
signal, feature or model space (Huang et al., 2001) to 
reduce mismatch between training and usage conditions. 
 
Signal-space methods (Ephraim, 1992; Digalakis et al., 
1993; Lee and Jung, 2000) typically try to enhance a 
noisy speech signal by improving its signal-to-noise 
ratio (SNR). However, improved SNR does not always 
contribute to improvement in recognition accuracy. 
Feature-space methods (Hermansky, 1990; Kim et al., 
1999) try to derive some kind of feature representation 
that is invariant to the change in noise conditions. 
Typically this is achieved by incorporating some aspects 
of human auditory modelling. Alternatively, some other 
feature-space methods (Sankar and Lee, 1996; Tian et 
al., 2002; Torre et al., 2002) try to understand and 
compensate the effects of noise on a speech 

representation and correspondingly reduce the 
mismatch. Model-space methods (Yao et al., 2001; Ida 
and Nakamura, 2002; Cerisara et al., 2004; Zhang and 
Furui, 2004) try to adjust the parameters of recognition 
models to incorporate the effects of noise on the models. 
Typically a model of the environment that considers 
additive and convolutional noise is assumed. 
 
In this work, the main focus is on feature-space 
compensation for a cepstral based front-end. It is 
demonstrated that the use of spectral flooring, together 
with cumulative distribution mapping can be a good 
alternative to spectral subtraction in compensating the 
effects of additive noise during the front-end processing. 
Moreover, additional improvements in recognition 
accuracy can be achieved by applying all these 
compensation methods together in a cascade fashion.  
 
The organisation of this paper is as follows. It will 
describe the details of the proposed front-end processing 
in Section 2 and some related recognition experiments 
on the Aurora II digits database in Section 3. Following 
this is a discussion of the findings in Section 4 and a 
summary of the conclusions in Section 5. 
 

2. Proposed Front-end Processing 

The development of the proposed front-end processing 
is based on the ETSI standard Mel-frequency cepstral 
coefficient (MFCC) front-end (ETSI, 2000). In addition 
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to the basic processing blocks (those blocks without 
underlined labels in Figure 1), three more processing 
blocks related to additive noise compensation have been 
added. These additional blocks include noise spectral 
subtraction (SS), spectral flooring (SF) in log-
compression and cumulative distribution mapping 
(CDM) for the cepstral and log-energy coefficients. A 
high level diagram of the processing flow is shown in 
Figure 1, while a more detailed description of the 
individual compensation blocks can be found in the 
following sub-sections. Details about the other basic 
processing blocks can be found in (Hirsch and Pearce, 
2000). 
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Figure 1: Proposed front-end processing which 
incorporates spectral subtraction, spectral 
flooring and cumulative distribution mapping for 
noise compensation 

2.1. Spectral Subtraction 

The implementation of the noise spectral subtraction 
module is based on a commonly used non-linear spectral 
subtraction algorithm (Vaseghi, 2000). It can be applied 
to reduce the effect of an additive noise on the 
magnitude spectrum of a speech signal by subtracting 
the noise estimate from the noisy signal spectrum. In our 
case, the spectral subtraction is applied after the Mel-
frequency filtering and the subtraction algorithm is given 
by: 
 

 X(ω) = max{ (Y(ω) – N(ω)), αY(ω)}  (1) 
 
where X(ω) is the estimated clean speech magnitude 
spectrum, Y(ω) is the magnitude spectrum of the noisy 
speech signal, N(ω) is the average magnitude spectrum 
of the noise and α∈(0,1) is an attenuation constant to 
prevent X(ω) from becoming negative due to error in the 
noise estimate. In this work, the first 10 frames of each 
utterance are assumed to be noise only and they are used 
to compute the average noise spectrum. Note that this is 
a relatively common assumption that would usually hold 
for practical ASR systems. 

2.2. Spectral Flooring 

The effect of additive noise on a log filterbank output is 
nonlinear and it can reduce the dynamic range or 
variance of the output (Torre et al., 2002). This 
reduction in variance is particularly significant if the 
original acoustic models are trained from clean speech 
data (i.e. speech with high signal-to-noise ratio). The 
large mismatch between the clean model set and the 
noisy data can cause recognition accuracy to degrade 
rapidly. To visualise the effect of noise on log filterbank 
output, a plot of the output sequences for the clean and 
noisy version of an example digit string is shown in 
Figure 2. 
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Figure 2: Log Mel-filter output (6th bank) 
sequences for clean (lower trace) and noisy 
(upper trace) version of the digit string “Six 
Three Five” , subway noise at 5dB SNR 

 
If a set of acoustic models is trained from clean speech 
data, spectral flooring can be applied to mask out the 
potential effect of noise by limiting the lower-bound of a 
Mel-filterbank output to an appropriate value. By doing 
that, one can maintain the dynamic range of a feature 
component in the model set to a desired level and thus 
help to reduce the potential mismatch between a noisy 
utterance and the acoustic models. In this work, we 
adopt the same type of logarithmic transform as 
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proposed in (Hermansky et al., 1993) for RASTA 
processing, given by: 
 
 Γ(y) = loge(1+γy)   (2) 
 
where y is the output of a Mel-filterbank in a particular 
speech frame (this notation assumes no spectral 
subtraction for generality) and γ is a flooring factor to be 
determined. In the literature, the flooring factor has to be 
adjusted explicitly according to the SNR of the 
corresponding filterbank output. However, in our case, γ 
is set to be filterbank-independent and the same single 
value is used for speech data with different SNR’s. This 
novel approach is possible only when cumulative 
distribution mapping is used in the front-end processing, 
as discussed in Section 4. Note that Γ(.) is 
approximately linear for γy<<1 and logarithmic for γy 
>>1.  

2.3. Cumulative Distribution Mapping 

The cumulative distribution mapping method described 
here can be traced back to the use of histogram 
equalisation (HE) in image processing (Russ, 1995). The 
use of the HE method for additive noise compensation in 
front-end processing of speech can also be found in 
(Torre et al., 2002; Pelecanos, 2003).  The main idea of 
this method is to map the distribution of the noisy 
speech features into a target distribution with a pre-
defined probability density function (PDF). In our case, 
it is assumed that for a given feature value vo, the 
mapping relationship would be: 
 

 � �−∞= −∞=
=
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z
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or 
 
 Fv(vo) = Fz(zo)   (4) 
 
where Fv(v) is the corresponding cumulative distribution 
function (CDF) of a given set of speech features and 
Fz(z) is the target CDF, f(v) and h(z) are the respective 
PDF’s.  From equation (4), we have  
 
 zo = Fz

-1[Fv(vo)]   (5) 
 
Therefore the required mapping from a given speech 
feature vo into the corresponding target feature zo is 
represented by equation (5). In our work, the target PDF 
of z is assumed to be a Gaussian with zero mean and 
unity variance. That is: 
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We also use the following formula to estimate Fv(vo): 
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 K = Count{ v < vo}    (8) 
 
i.e. K is the number of frames whose corresponding 
feature values are less than a particular vo in an utterance 
and N is the total number of frames in the utterance. 
 
In our work, the target Fz(z) is divided into 100 bins and 
the corresponding z values are stored in a table. Note 
that since a Gaussian distribution is symmetric, in 
practice we need only to store 50 entries. In the 
experiments, cumulative distribution mapping is applied 
only to the basic feature vector which consists of the 12 
MFCC’s and the log-energy coefficient. 
 

3. Experimental Results 

The proposed front-end has been evaluated on the 
Aurora II database (Hirsch and Pearce, 2000) with 
various configurations. This database contains noisy 
connected digits (spoken by American adults), which 
were created by adding various types of noises at 
different SNR’s to the original clean utterances. The 
types of noises include subway, babble, car, and 
exhibition noise. There are three test sets in the 
database, but we have performed the evaluation using 
test set A only.  The SNR’s  of  the  test data range from 
-5dB to more than 20dB, while those of the training data 
can have SNR’s ranging from 5dB to more than 20dB.  

3.1. Experimental Setup 

The basic feature vector of our front-end consisted of 12 
MFCC’s and log-energy. This basic feature vector was 
appended with their corresponding 1st-order and 2nd-
order time derivatives to form a resultant vector with 39 
coefficients for speech recognition at the backend, as per 
the Aurora evaluation framework. The Hidden Markov 
Model (HMM) Toolkit (Young et al., 1997) was used 
for the speech recognition experiments. Each model was 
represented by a continuous density HMM with left-to-
right configuration. Digit models had 16 states with 3 
Gaussians per state, while the noise model had 3 states 
with 6 Gaussians per state. An inter-digit silence model 
with 1 state was also used, and it was tied with the 
middle state of the 3-state silence model.  
 
Two sets of HMM’s were trained for the evaluation. The 
clean model set was trained from clean speech data only 
and the multi-condition model set was trained from the 
noise-added version of the same training data. Note that 
the training and test data are disjoint sets and comprise 
the original data from the Aurora CDs without end-point 
detection. Each of the two training sets contains 8440 
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utterances, while the test set A contains about 28K 
utterances in total. 

3.2. Results with Various Front-End Configurations 

We followed the official Aurora evaluation framework 
in that average recognition accuracy for each test set is 
calculated from the recognition results for those test data 
with SNR’s from 0 dB to 20dB only. When the ETSI 
standard MFCC front-end was used, the average digit 
accuracy for the test set A was found to be 61.34% for 
the clean HMM set and 87.82% for the multi-condition 
HMM set. We also modified the calculation of log-
energy to make use of Mel-filterbank outputs instead of 
calculating it from a frame of raw speech signal. In our 
case, the log-energy (lnE) is calculated as: 
 

 �
=

=
M

i
ie X

1

2 )(loglnE    (9) 

 
where Xi is the output amplitude of the i-th Mel-
filterbank after spectral subtraction and M is the total 
number of Mel-filterbanks (M=23). With this 
modification, the average digit accuracy was found to be 
65.01% for the clean HMM set and 86.21% for the 
multi-condition HMM set. Based on this modification, 
various recognition experiments were performed using 
different front-end configurations, and the results are 
summarised as shown in Table 1. Note that the 1st-order 
and the 2nd-order time derivatives of a basic feature 
vector were generated after those basic features had 
been compensated. 
 

Table 1: Average digit accuracies (%) for Aurora 
test set A with various front-end configurations 

Front-end 
Configuration 

Clean HMM Set 
Multi-condition 
HMM Set 

No compensation 65.01 86.21 

SS only 75.64 89.07 

SF only 53.75 86.61 

CDM only 76.92 89.71 

SS/CDM 79.61 90.23 
SF/CDM 79.46 89.31 

SS/SF 61.15 87.63 

SS/SF/CDM 81.46 89.54 

ETSI standard 61.34 87.82 
 
SS: Spectral subtraction (α=0.4) 
SF: Spectral flooring (γ=0.001) 
CDM: Cumulative distribution mapping 
 
 
From the above table, it is found that the front-end 
configuration SS/SF/CDM, which combines the three 
noise compensation methods, achieves the best 
recognition accuracy for the clean HMM set (81.46%). 

On the other hand, the spectral flooring method is found 
to have no further improvement on the accuracy of the 
SS/CDM front-end for the multi-condition HMM set. 
 
For easy comparison with the baseline results, a break-
down of the recognition results for the final front-end 
configuration (SS/SF/CDM) according to individual 
SNR levels is shown in Figure 3.  From the figure, it is 
observed that this front-end configuration achieves 
better recognition accuracy than that of the ETSI 
standard front-end in every noise level (SNR). 
Moreover, the difference in recognition accuracy for the 
clean and multi-condition HMM sets is found to be 
much reduced using the proposed front-end.  
 
ETSI_clean: standard front-end, clean HMM set 
ETSI_multi: standard front-end, multi-condition HMM set 
Proposed_clean: SS/SF/CDM, clean HMM set 
Proposed_multi: SS/SF/CDM, multi-condition HMM set 
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Figure 3: Recognition results for Aurora test set 
A, SS/SF/CDM front-end compared with ETSI 
standard front-end 

 

3.3. Results with Various Degrees of Spectral Flooring 

We also investigated the effect of various degrees of 
spectral flooring on the recognition accuracy for using 
the SS/SF/CDM front-end. The experimental results are 
shown in Table 2. 
 

Table 2: Average digit accuracies (%) for Aurora 
test set A with various degrees of spectral 
flooring, SS/SF/CDM front-end; α = 0.4 

Spectral    
Flooring (γ) 

Clean HMM Set 
Multi-condition 
HMM Set 

0.01 79.88 90.01 

0.005 79.06 89.71 

0.001 81.46 89.54 

0.0005 81.31 88.96 
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From the previous table, it can be observed that although 
there is an optimal value of γ for the clean HMM set, the 
change in recognition accuracy is barely significant if γ 
is sufficiently small (i.e. a reasonably higher degree of 
flooring). Also the results here further confirm that 
spectral flooring has limited benefit for multi-condition 
training. 
 
To understand under what noise conditions spectral 
flooring can further improve the SS/CDM front-end, a 
comparison of recognition results between the SS/CDM 
and the SS/SF/CDM front-ends at different noise levels 
was undertaken (shown in Figure 4). As observed from 
Figure 4, the improvement in the average digit accuracy 
is mainly obtained from the noisier conditions (5 and 0 
dB SNR).  
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Figure 4: Recognition results for Aurora test set 
A with clean HMM set, SS/SF/CDM front-end (γ 
= 0.01 or 0.001), and SS/CDM front-end 
(NO_SF); α = 0.4 

 
 

4. Discussion 

As far as individual compensation methods are 
concerned, the cumulative distribution mapping was 
found to provide the greatest improvement in 
recognition accuracy, independent of the type of HMM 
set being used. It is interesting to note that although log-
energy is used as a component of the basic feature 
vector, one can actually get rid of the logarithm and just 
use the energy for the cumulative distribution mapping 
method. This will not affect the recognition results since 
the CDF of the energy values is invariant to any 
monotonically increasing transformation, such as 
logarithmic operation. 
 
It can be observed from Table 1 that the use of spectral 
flooring alone with a single fixed parameter is not very 

workable. This agrees with other findings in the 
literature (Hermansky, 1993; Lieb and Fischer, 2001) 
which observed that γ should be made dependent on the 
filterbank output SNR. Nevertheless, when spectral 
flooring is used with cumulative distribution mapping, 
reasonable improvement in recognition accuracy can be 
obtained. In fact, it is observed that the recognition 
accuracies with the clean HMM set are almost the same 
for both the SS/CDM and the SF/CDM front-ends. The 
implicit SNR normalisation of each Mel-filterbank 
output by the cumulative distribution mapping on the 
cepstral coefficients may be a possible reason why a 
single flooring parameter can be used in this case. 
 
With reference to the ETSI standard front-end 
configuration, the novel SS/SF/CDM front-end 
configuration achieves a relative error reduction of 
around 52% for the clean HMM set and 14% for the 
multi-condition HMM set. These results compare 
favourably with those reported in (Cui et al., 2002) 
which utilised more than seven different compensation 
algorithms, including explicit end-point detection, 
spectral subtraction and RASTA filtering, in obtaining 
the results for the same test set.  
 

5. Conclusions 

A new and noise robust front-end based on the 
combined application of spectral subtraction, spectral 
flooring and cumulative distribution mapping has been 
proposed. Experimental results on the Aurora II speech 
database have revealed the effectiveness of the novel 
combination of these three compensation methods. The 
proposed front-end achieves an average digit accuracy 
of 81.46% for the test A with the clean HMM set and 
89.54% for the multi-condition HMM set. Moreover, it 
is observed that the use of a single fixed parameter (γ) to 
control spectral flooring is beneficial only when 
cumulative distribution mapping is also applied at a later 
stage of the front-end processing. Based on the proposed 
front-end configuration, we have also investigated the 
effect of varying the degree of spectral flooring on the 
recognition results and found that higher degree of 
flooring is required for the Aurora database. Possible 
future extension work includes the use of dynamic noise 
estimates to handle non-stationary noises, the 
replacement of the simple spectral flooring with a more 
advanced temporal masking algorithm, and the use of a 
different target CDF for the cumulative distribution 
mapping method. 
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