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Abstract 

The properties and applications of morphological filters for speech analysis 
are investigated.  We introduce and investigate a novel nonlinear spectral 
envelope estimation method based on morphological operations, which is 
found to be very robust against noise.  This method is also compared with 
the spectral envelope estimation vocoder (SEEVOC) method.  A simple 
method for the optimum selection of the structuring set size without using 
pitch information is proposed.  Also, a new concept of higher order peaks is 
introduced and found to be beneficial.  The morphological approach is then 
used for a new pitch estimation method and for the general sinusoidal 
analysis of speech or audio. 

1. Introduction 
Mathematical morphology refers to a branch of 
nonlinear image processing and analysis that 
concentrates on the geometric structure of an image 
(Maragos and Schafer, 1987).  We introduce and 
investigate the properties and applications of 
morphological operations to speech analysis in this 
paper. 

There are two primary morphological operations 
(erosion and dilation) and two secondary operations 
(opening and closing) that play key roles in 
morphological processing.  They are nonlinear 
operations that locally modify the geometric features of 
the signals.  We have investigated all these operations 
for their use in speech analysis. 

All morphological operations depend on the concept 
of fitting a structuring element.  Since morphology is a 
set-theoretical approach, the structuring element will be 
a set of discrete values for one-dimensional signals such 
as speech or audio.  The structuring set is a sort of 
sliding window which is symmetric about the origin, 
and it determines the performance of the morphological 
operation.  The length of the window is twice the size 
of the structuring set (SSS) plus one; i.e. 
Lwindow = 2*SSS + 1. 

In this paper we mainly investigate morphology in 
the context of spectral envelope estimation of speech, 
where the morphological operators are used to extract 
features of speech signals and to estimate spectral 
envelopes by selecting true harmonic peaks in the 
signal.  The four major operators in morphological 

filtering have been investigated with different SSS, and 
the performance of the resulting spectral envelope 
estimation methods has been analyzed based on a 
spectral distortion (SD) criterion.  Dilation has proved 
to be a successful method for spectral estimation and 
different methods for spectral envelope estimation based 
on it are proposed here. 

Spectral estimation using morphological filters is 
then compared with the spectral envelope estimation 
vocoder (SEEVOC) method (Paul, 1981).  Basically, 
SEEVOC is a nonlinear method of estimating the 
spectral envelope in the frequency domain, and works 
by interpolating between selected (hopefully harmonic) 
peaks of the spectrum.  This algorithm requires an 
initial estimate of pitch CP (coarse pitch), which is 
analogous to the selection of the optimum SSS in 
morphological filters.  Spectral estimation using 
morphological filters is quite a simple computational 
approach, and the prior pitch information turns out to be 
less critical than with SEEVOC. 

The closing operation in the frequency domain has 
also been found useful for other purposes.  Closing is 
defined as dilation followed by erosion, and tends to 
remove valleys in the spectrum, leaving the harmonic 
regions behind.  The resulting signal is thus useful for 
various speech analysis purposes, including pitch 
determination algorithms (PDAs), harmonic-plus-noise 
decomposition (HND) and noise reduction (NR).  We 
present here a new pitch determination algorithm based 
on the harmonic product (or sum) spectrum method 
(Schroeder, 1968).  Extensions of our approach to 
HND are also proposed and investigated. 
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2. Spectral estimation using morphology and 
comparison with SEEVOC 

Dilation, one of the fundamental morphological 
operations, has proved to be a successful method for 
spectral envelope estimation.  We use it to pick major 
harmonic peaks, and then interpolate (using cubic 
splines) to obtain the spectral envelope. 

When applied to one-dimensional signals, the 
dilation operator is equivalent to the simple concept of 
finding the maximum value under a sliding window.  It 
leads to flattening of the spectrum near the peaks.  The 
dilated region increases as the SSS increases, and 
selecting the optimum SSS for spectral estimation is 
closely related to (coarse) pitch estimation. 

With large sliding windows (i.e. large SSS values), 
neighbouring peaks may affect the length of the dilated 
region.  This interference will be less for small sliding 
windows.  It was observed that the choice of SSS 
affects the performance of spectral estimation. 

Three different methods for spectral envelope 
estimation using dilation were proposed and 
investigated.  The best of these is the “tracking peak” 
method, in which, for each dilated region, we select the 
spectral peak that causes that region to be dilated (it is 
the largest peak under all sliding windows that include 
at least part of the dilated region).  This strategy selects 
most true harmonic peaks for interpolation. 

This method was compared with the SEEVOC 
algorithm, using test signals with known spectral 
envelopes.  To obtain such test signals, synthetic 
voiced speech signals were used, generated by applying 
trains of impulses to vocal tract filters derived from 
actual speech signals by linear prediction analysis.  
Thus the frequency response of the LP vocal tract filter 
is the true envelope of the synthetic speech signal.  
This allows exact comparison of any spectral envelope 
estimation method with the true envelope. 

The spectral distortion SD between the true envelope 
and an estimated envelope was used as the objective 
measure.  This is calculated by the formula 
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where L is the number of frequency points, PXi is the 
power spectrum at the ith frequency (true envelope) and 
PYi is the corresponding estimated envelope.  The gain 
factor K, which is included to allow for the fact that the 
scales of the two spectra may be different, is chosen to 
minimize SD. 

Figure 1 shows the effect of SSS on the estimated 
envelope using morphology (dilation, peak picking and 
interpolation).  The true pitch (TP) is 12.8 samples in 
this case.  When SSS is very small, the dilated spectrum 
follows the shape of the original signal, which leads to 

very large SD.  As SSS starts to increase, some low 
level peaks are still selected along with all of the 
harmonic peaks.  The performance of the algorithm 
improves with increasing SSS.  The minimum SD is 
achieved for optimum SSS ranges in which only the 
major harmonic peaks are selected.  In this example, 
the minimum SD is about 1 dB, which is typical, and 
this is obtained when the sliding window size is in the 
range 9 – 21 samples (i.e. SSS = 4  - 10).  SD rises 
steadily but gracefully (with jumps at one pitch period 
interval in most cases) as SSS increases further, due to 
missing harmonic peaks.  Hence it is important that the 
SSS value is not substantially underestimated, whereas 
the morphological method is relatively tolerant of 
overestimated SSS values. 

The analogous effect to the choice of SSS is the 
choice of coarse pitch CP in the SEEVOC method, 
which we have investigated and optimized previously 
(Kim and Holmes, 1997).  It was found that the 
minimum SD was obtained when the CP is in the range 
10 - 17 samples using the same synthetic voiced signal 
as in this paper.  Since the relative range of SSS for 
optimum performance is greater than that of CP, it 
follows that the choice of SSS in the new method is less 
sensitive than the choice of CP in the SEEVOC method. 
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Figure 1:  The effect of SSS on the estimated 
spectral envelope distortion SD using morphology. 

3. Spectral estimation using morphology in the 
presence of noise 

The morphological spectral estimation method 
described above is a nonlinear peak selection method 
that tries to select only the harmonic peaks.  It is 
similar to SEEVOC, but with a simpler peak picking 
strategy.  It attains a degree of acoustic noise 
robustness by keying on the spectral peaks and ignoring 
the low level components, which are more affected by 
noise. 

To examine this proposition, experiments were 
performed to investigate the effect of the choice of SSS 
on the morphological methods in a noisy environment.  
The added noise was white Gaussian, and the input 
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signal-to-noise ratio (SNR) was varied over the range 
0 – 30 dB.  The SD curves in a typical case are shown 
in Figure 2 (solid line).  For SNR above about 25 dB 
the performance is nearly as good as for infinite SNR, 
which is better than the SEEVOC algorithm.  But at 
low SNRs the SD deteriorates, as expected, although the 
choice of SSS becomes less critical at low SNRs.  That 
is, the range of optimum SSS is larger at low SNRs. 

We have further improved the performance of this 
method by making use of a novel higher order peak 
concept.  If we call the peaks of the spectrum the first 
order peaks, then the second order peaks are defined as 
the peaks of the series (in the frequency domain) formed 
by the first order peaks – that is, they are the “peaks of 
the peaks”.  Third and higher order peaks can be 
defined in a similar way.  (The same concept can be 
used in the time domain, but this is not considered here.) 

The nature of the higher order peaks is to have 
higher levels, on average, than lower order peaks.  
Higher order peaks also occur less often – there are 
fewer second and third order peaks than first order 
peaks.  Peak rate of occurrence is an interesting feature 
of higher order peaks, and it is the second and third 
order peaks that contain more reliable pitch period 
information.  Another interesting peak feature that can 
be made use of is the number of points between second 
or third order peaks.  It should be noted that most true 
harmonic peaks will be among the second or higher 
order peaks. 

The major reason for large SD with small values of 
SSS is that some low level peaks are chosen for the 
spectral envelope estimation.  Use of the second (or 
higher) order peaks for the interpolation step gets rid of 
most of these spurious noisy peaks, thus reducing SD 
with small values of SSS.  For larger SSS values, 
missing harmonic peaks increase the SD and using 
higher order peaks for interpolation does not affect the 
SD.  The improvements when using second order peaks 
for interpolation are shown in Figure 2 (dashed lines), 
where the results of using first order peaks are also 
shown (solid lines). 

The SD with different TP values is shown as a 
function of SNR in Figure 3.  As the SNR increases, the 
SD decreases steadily.  In contrast to the SEEVOC 
method, which did not perform very well for very high 
fundamental frequencies, our morphological method 
was found to work very well even for very high-pitched 
cases.  It was observed that the low-pitch cases are 
more sensitive to the SNR value, which is similar to 
SEEVOC.  Clearly, because these methods select 
spectral peaks in all frequency ranges, the increase of 
SD at low SNRs comes from the low amplitude sections 
of the spectrum, which are most likely to have their 
peaks affected by the noise.  In the high SNR range 
(e.g. SNR > 15 dB), spectral envelope estimation on 
low-pitched speech signals was better than on high-
pitched signals.  On the other hand, when the SNR is 

low, the performance was better with high-pitched 
speech signals than with low-pitched ones. 

Basically, the morphological method was found to 
be more robust than the (standard) SEEVOC algorithm.  
(However, we have found that the performance of 
SEEVOC also improves significantly if second order 
peaks are used instead of first order peaks.)  The 
performance of either method can be improved further 
by increasing the SNR using noise reduction methods. 
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Figure 2:  Performance of the morphological 
method at different SNRs, showing the effect of the 
choice of SSS on spectral distortion SD.  Solid lines: 
1st order peaks used; Dashed lines: 2nd order peaks 
used. 
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Figure 3:  Variation of SD as a function of SNR with 
the morphological method (optimum SSS used). 

4. Speech analysis using morphological pre-
processing and optimum SSS selection 

Morphological filtering is very simple to implement and 
it can be used to extract peak or valley features from 
arbitrary signals.  In addition, it is nonparametric; i.e. it 
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does not presuppose anything about the speech spectrum.  
Some further applications will now be discussed. 

The closing operation fills the valleys in a spectrum, 
and this behaviour can be used for pitch estimation and 
other operations.  It was observed that harmonic peaks 
stand out and small peaks are flattened after closing 
with the optimum SSS.  With larger SSS, the flattened 
regions created in the valleys lie above the low peaks, 
and this can be used for formant estimation. 

We consider a pre-processor for the further analysis 
of speech that consists of the closing operation on the 
spectrum, followed by the generation of a remainder (or 
residual) spectrum which is essentially the spectrum 
components that stand above the closure floor, as shown 
schematically in Figure 4b.  This remainder spectrum is 
very useful for many subsequent speech analysis 
techniques.  It is also very robust against noise, since it 
selects the peaks of the harmonics, which stand out even 
among noise. 

If SSS is too low there are too many noise peaks, but 
if it is too large we miss harmonics.  A simple adaptive 
strategy can find the optimum value, as follows.  From 
the remainder spectrum (Figure 4b), we calculate P, 
which is the ratio of the energy in the N largest peaks to 
the total energy in the remainder spectrum, where N is a 
small number (e.g. 5 - 15) that is also adaptively chosen.  
The criterion we will use is that the optimum choice of 
SSS will result in a particular value of P (e.g. 0.3 – 0.5).  
The optimum choices of N, P and SSS depend on the 
pitch and SNR, but are not critical.  For example, N 
should be smaller for female than for male speakers, 
since there will be fewer harmonics in total. 

Frequency

(a)

A
m

pl
itu

de

(b)

N selected peaks

f0 2f0 5f04f03f0
Frequency  

Figure 4:  (a)  Noisy spectrum and its closure.   
(b)  Remainder or pre-processed spectrum (the part 
of the spectrum above the closure floor). 

To test this concept we plot the energy ratio P against 
the normalized structuring set size SSS/TP for many 
voiced frames in Figure 5.  These traces include a 
variety of pitches TP, N values and SNRs (with N 

determined by the iterative procedure described in the 
following).  The energy ratio is low up to about 
SSS/TP = 0.5 but there is a very sharp increase at larger 
values, due to the remainder spectrum missing true 
harmonic peaks.  Therefore, our proposed strategy for 
SSS selection is to choose the SSS value where the 
energy ratio suddenly rises, e.g. where P is about 
0.3 - 0.5.  This results in a sliding window length close 
to one pitch period. 
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Figure 5:  Dependence of the energy ratio P on 
SSS/TP.  These curves were taken from many speech 
frames with a variety of pitches, N values and SNRs.  
(P = 1 corresponds to there being only N or fewer 
peaks remaining after the pre-processing.) 

The flow diagram for the resulting adaptive choice of 
the parameters is shown in Figure 6.  We have found 
that a good choice of N is 7 for high pitch voiced 
frames, 10 for mid pitch and 13 for low pitch.  In this 
algorithm we start with N = 10 and then find a value of 
SSS that gives P in the range 0.3 - 0.5.  If this value is 
too large for the assumed N, we reduce N and do the 
analysis again to get the final optimum SSS.  We do the 
opposite if SSS is too small. 

The final pre-processed signal (remainder spectrum) 
is extracted using the optimum SSS value.  Note that 
we do not assume any prior pitch information in this 
algorithm.  (But if desired, the optimum SSS could be 
used to give a good coarse pitch estimate, based on an 
average of the curves in Figure 5.) 

5. Other applications of morphological 
methods 

5.1. PDA based on morphological pre-processing 

We have developed a pitch determination algorithm 
(M-PDA) using the foregoing morphological pre-
processing.  It is based on the fact that most of 
remainder peaks after morphological pre-processing are 
due to major sine wave components, so that pitch is 
emphasized for harmonic signals. 

The M-PDA is basically morphological pre-
processing followed by the harmonic sum spectrum (or 
harmonic product spectrum) PDA method of Schroeder 
(1968), illustrated in Figure 7.  Sinusoidal components 
at the fundamental frequency f0 tend to dominate the 
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summed spectrum in Figure 7d.  It was found that use 
of frequency scale compression factors up to five results 
in good pitch estimates (higher values are even better). 

This method works well even when the pre-
processed signal misses some of the harmonics, since 
most of the peaks of the residual signal are at multiples 
of the pitch frequency. 

Speech
frame Initialize X

P  versus SSS
analysis

Increase X

Is X too high or
low for this SSS?

Best
SSS

HighLow

Reduce X

OK Optimum SSS   

Figure 6:  Flow diagram for (automatic and 
iterative) optimum selection of SSS in the 
morphological analysis system. 

The most impressive aspect of the M-PDA is that it 
works for any SSS.  For very small SSS it is equivalent 
to the original Schroeder method.  For the ideal SSS, 
the pre-processed signal has mainly harmonic peaks, 
thus emphasizing the fundamental frequency in the 
summed spectrum.  For very large SSS, some of the 
harmonic peaks will be missing but very strong 
harmonic peaks will remain, thus still strongly 
emphasizing the correct pitch frequency.  It is easy to 
appreciate that this method will be largely unaffected by 
the formant structure.  In summary, the M-PDA is very 
simple and efficient, and does not require any prior pitch 
information or any assumption about the signal (apart 
from near harmonicity for voiced sounds). 

The M-PDA was tested against two well known 
PDAs using 300 real voiced speech frames in white 
noise at various SNRs.  The others are the 
autocorrelation (A-) PDA (Rabiner, 1977) and the 
sinusoidal (S-) PDA, which is based on a sinusoidal 
model of speech and which is used in sinusoidal coding 
(McAulay and Quatieri, 1990). 

The gross error results (pitch halvings or doublings) 
are tabulated in Table 1, and the fine error results (no 
pitch halvings or doublings) are given in Table 2.  It is 
obvious from the results that the A-PDA suffers from 
severe gross error problems, due to its inability to 
distinguish the strong influence of formant structures.  
Even with the aid of centre-clipping this effect could not 

be reduced much.  The S-PDA is known to be 
relatively immune to gross pitch errors, but it still 
suffered from some noise errors and pitch doublings and 
halvings because of its inability to cope with rapidly 
rising or decaying regions such as the transition from 
unvoiced to voiced speech.  However, the M-PDA is 
better than the S-PDA in regard to both gross and fine 
errors. 

This PDA method can be generalized to many other 
PDA methods (some of which are better than the 
Schroeder method used), since any existing or proposed 
PDA can be applied to the morphologically pre-
processed signal instead of the original speech signal, 
with improvements to be expected because of the 
increased harmonic content of the pre-processed signal. 

(a)

Frequency
f0 2f0 4f03f0

(b)

f0 2f0 4f03f0

(d)

f0 2f0 4f03f0

(c)

f0 2f0 4f03f0

 
Figure 7:  PDA based on the harmonic sum (or 
product) method with morphological pre-processing.  
(a) Remainder spectrum, (b) and (c) Frequency scale 
divided by 2 and 3, respectively, (d) Sum of a - c 
(scaled). 

Error type 
(SNR) M-PDA S-PDA A-PDA 

PD (Clean) 0 (0%) 8 (2.7%) 11 (3.7%) 
PH (Clean) 0 (0%) 3 (1%) 15 (5%) 
PD (20 dB) 3 (1%) 11 (3.7%) 17 (5.7%) 
PH (20 dB) 2 (0.7%) 4 (1.3%) 19 (6.3%) 
PD (10 dB) 9 (3%) 15 (5%) 28 (9.3%) 
PH (10 dB) 5 (1.7%) 8 (2.7%) 34 (11%) 
PD (0 dB) 19 (6.3%) 28 (9.3%) 47 (15.7%) 
PH (0 dB) 17 (5.7%) 19 (6.3%) 44 (14.7%) 

Table 1:  Gross pitch error results.  These are the 
number of frames with pitch halving (PH) or 
doubling (PD), also shown as a percentage of all 
frames. 
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Finally, we showed how our approach may be used 
to extends the HND method to the general sinusoidal 
analysis of speech or audio signals. 

SNR M-PDA S-PDA A-PDA 
Clean 0.53% 0.65% 1.06% 
20 dB 0.6% 0.84% 1.13% 
10 dB 1.28% 1.38% 1.74% 
0 dB 2.1% 2.14% 3.82% A: Sine wave regions

B: Noise regions

Frequency

(a)

f0 2f0 3f0

B BBB

A AA

(b)
B BBB

A AA

f0 f2f1  

Table 2:  The standard deviation of the relative 
pitch error (TP - EP)/EP as a percentage, where TP 
is the true pitch and EP is the estimated pitch (gross 
error frames not included) 

5.2. Extension of a method of harmonic-plus-noise 
decomposition (HND) to general sinusoidal analysis 

The HND method (d’Alessandro et al., 1995; Ahn and 
Holmes, 1997) assumes that the input speech signal is 
harmonic and that the pitch information is available.  
An obvious change in these methods is to use M-PDA 
instead of the PDA used in the original HND methods. 

However, and more significantly, we can extend the 
HND method to include the non-harmonic, or general 
sinusoidal, case by replacing one of the initial steps in 
the HND (where we identify the sinusoidal regions) 
with the morphological analysis method.  Simple peak 
picking of the remainder spectrum with the optimum 
SSS (or larger) will give an accurate initial estimate of 
the sinusoidal regions.  This works as well in the 
general case as in the harmonic case.  It gives an 
alternative to the methods used in the sinusoidal analysis 
method (McAulay and Quatieri, 1990). 

Figure 8:  Concept diagram of the extension of the 
harmonic-plus-noise decomposition (HND) method to 
the more general sinusoidal case.  (a) Harmonic case, 
(b) General sinusoidal case with . 1 0 22 , 3f f f≠ ≠ 0f
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