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Abstract
This paper reports on experiments to quantify the benefits of large training databases for non-
English HMM-based keyword spotting. The research was motivated by the lack of such
databases for many non-English languages, and aims to determine if the significant cost and
delay of creating these databases justifies the gains in keyword spotting performance. HMM-
based keyword spotting experiments performed for English, Spanish and Indonesian found that
although some gains in performance can be obtained through increased training database size,
the magnitude of these gains may not necessarily justify the effort and incurred delay of con-
structing such databases. This has ramifications for the immediate development and deployment

of non-English keyword spotting systems.

1. Introduction

With the recent increase in global security awareness,
non-English speech processing has emerged as a major
topic of interest. One problem that has hindered the devel-
opment of robust non-English keyword spotters is the lack
of large transcribed non-English speech databases. This
paper reports on experiments to quantify the benefits of
large training databases for non-English keyword spotting.
Specifically it aims to determine if the significant cost of
collecting and transcribing large non-English databases jus-
tifies the gains in keyword spotting performance. This has
ramifications for the immediate development and deploy-
ment of non-English keyword spotting systems.

A study on the effect of training database size reported
in (Moore 2003) demonstrated the merits of large train-
ing databases for speech transcription. This study revealed
that gains in word error rate were significant when compar-
ing systems trained on a few hours of speech with systems
trained on tens and hundreds of hours of speech. Although
some of the word error rate gains were from more robust
acoustic models, a major component was also sourced from
more robustly trained language models.

In keyword spotting, language models do not play as
significant a role. Specifically, HMM-based keyword spot-
ting (Rohlicek 1995) and speech background model key-
word verification (Wilpon, Rabiner, Lee, and Goldman
1990) do not require language models at all. In fact these
two algorithms perform a much simpler task than speech
transcription. For example single keyword spotting is es-
sentially a two-class discrimination task relying completely
on acoustic models. In view of the reduced complexity of
the keyword spotting task, it is plausible that keyword spot-
ting performance is less sensitive to training database size.

Keyword spotting and verification experiments were
performed for English, Spanish and Indonesian using a va-
riety of training database sizes. Experiments for Spanish
and Indonesian were only done on smaller sized databases

as there was significantly less transcribed data available.
Trends in performance across training database size were
examined, as well as the effects of different model archi-
tectures (eg. monophones versus triphones). Finally pre-
dictions for expected performance of the Indonesian key-
word spotter trained on a larger database were made based
on trends observed in English and Spanish experiments.

2. Background

Hidden Markhov Model (HMM) based speech recog-
nition provides a convenient framework for keyword spot-
ting. The techniques for training such systems are well es-
tablished and training methods can remain independent of
the target language. A two stage approach is used in the re-
ported evaluations. First, a HMM-based keyword spotter is
used to generate a set of candidate keyword occurrences. A
subsequent speech background model keyword verification
stage is then used to prune false alarms (FAS).

2.1. HMM-based keyword spotting

A keyword spotter is used to postulate candidate occur-
rences of a target keyword in continuous speech. HMM-
based keyword spotting (HMMKS) uses a speech recog-
niser to locate these candidate occurrences. All non-target-
keywords in the target domain’s vocabulary are represented
by a "non-keyword’ word. An open word loop recognition
network is then used to locate candidate keyword occur-
rences. The grammar to perform HMMKS is given by the
Extended Backus-Naur Form grammar:

keywordl| ... |keywordN (1)
(K eywords|nonkeyword)+ (2)

Keywords

Grammar =

Recognition using this grammar generates a time-marked
sequence of keyword and non-keyword tokens for a given
observation sequence.

Ideally the non-keyword model should model all non-
target-keywords in the target domain’s vocabulary. How-
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ever this is not only complex but computationally expen-
sive and hence a plethora of non-keyword model approx-
imations have been proposed in literature. These include
anti-syllable models (Xin and Wang 2001), a uniform dis-
tribution (Silaghi and Bourlard 2000) and a speech back-
ground model (Wilpon, Rabiner, Lee, and Goldman 1990).
For the experiments reported in this paper, the speech back-
ground model (SBM) described in (Wilpon et al. 1990) was
selected as the non-keyword model of choice because of it’s
prevalent use in many other areas of speech research.

The algorithm for HMMKS using an SBM (HMMKS-
SBM) is:

1. Given a set of target keywords, create a recognition
network using the grammar in equation 2

2. For each utterance, use a speech recogniser and the
constructed recognition network to generate a se-
quence of keyword/non-keyword tokens

3. Select all keyword tokens in the recogniser output se-
quence and label them as candidate keyword occur-
rences

4. The candidate occurrences are passed on to a subse-
quent keyword verification stage to cull FAs

2.2. Speech background model keyword verification

Keyword verification algorithms are used to reduce the
number of FAs output by a preceding keyword spotting
stage. Typically such algorithms derive a confidence score
for each candidate keyword occurrence and then accept or
reject the candidate by thresholding. In Log-Likelihood Ra-
tio (LLR) based keyword verification, the keyword confi-
dence scoring metric takes the form:

C = log(p(X|Mkeyword)) — 1og(P(X | Anonkeywora)) (3)

where X is the sequence of observations corresponding to
the candidate to be verified, M.yworq IS the acoustic model
for the target keyword (eg. concatenated monophones
or triphones) and Aponkeyword 1S the acoustic model for
the non-keyword against which the target word is scored.
The non-keyword model is analogous to the non-keyword
model used in HMMKS.

Verification performance can vary dramatically depend-
ing on the choice of non-keyword model. For example co-
hort word non-keyword models were shown to yield better
performance than Gaussian Mixture Model non-keyword
models in (Thambiratnam and Sridharan 2003). For the
experiments reported in this paper, the SBM used in the
HMMKS stage was also used as the non-keyword model
for keyword verification to provide consistency between the
spotting and verification stages. The LLR-based confidence
score for a candidate keyword occurrence using an SBM is
then given by:

C= lo.g(p(Xp\keywOTd)) - lo.g(p(X|/\SBM)) (4)

Given the confidence score formulation in equation 4,
the algorithm for speech background model keyword veri-
fication (SBMKV) is:

1. For each candidate, calculate the SBMKYV confidence
score given by equation 4

2. Apply thresholding using the SBMKYV confidence
score to accept/reject candidates
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3. Experiment Setup

Training and evaluation speech were taken from the
Switchboard 1 English telephone speech corpus, the Call-
home Spanish telephone speech corpus and the OGI Mul-
tilingual Indonesian telephone speech corpus. For each
language all utterances containing out-of-vocabulary words
were removed. This gave a total of approximately 165
hours of English data, 10.2 hours of Spanish data, and 3.5
hours of Indonesian data. Due to the limited amount of
data available for the non-English languages, we designated
only 40 minutes of data from each language set as evalua-
tion data while the remaining data was used for training.

All data was parameterised using Perceptual Linear
Prediction (PLP) coefficient feature extraction. Utterance
based cepstral mean subtraction (CMS) was applied to re-
duce the effects of channel/speaker mismatch.

3.1. Training data sets

Reduced size training sets were generated for English
and Spanish by randomly selecting utterances from the full
sized training sets. Since there were only 2.8 hours of data
for Indonesian, it was decided that the smallest training
set size for the other languages would be of a compara-
ble size. However, as the size of phoneset differed between
languages (44 for English, 28 for Spanish and 28 for In-
donesian), the average number of hours of speech per phone
instead of the total number of hours of speech was kept
constant across the reduced size training data sets. This re-
sulted in reduced size training sets of 4.2 hours for English,
2.8 hours for Spanish and 2.8 hours for Indonesian, an av-
erage of approximately 0.1 hours per phone (h/phone) for
each data set.

An intermediate sized English training database was
also created to facilitate comparative experiments between
English and the full-sized Spanish training database. As be-
fore, the average number of hours of speech per phone was
kept consistent between the two languages. This gave an
intermediate sized English training database of 15.4 hours,
approximately 0.35 h/phone.

To avoid confusion, the codes in table 1 are used when
referring to the individual training data sets. The S1 train-
ing sets correspond to the 0.1 h/phone training data sets and
exist for all three languages. The S2 training sets corre-
spond to the 0.35 h/phone training data sets and only exist
for English and Spanish. Finally the S3E set corresponds to
the full sized English training data set and was included to
provide insight into spotting and verification performance
for systems trained using very large databases.

3.2.  Model architectures

Three HMM phone model architectures were trained for
each training data set: 16-mixture monophones, 32-mixture
monophones and 16-mixture triphones. It was anticipated
that the triphone architecture would provide the greatest
performance when using the large training data sets but
would have reduced performance for smaller training data
sets due to data sparsity issues. The 16-mixture monophone
and 32-mixture monophone architectures were included to
address these data sparsity issues. Finally a 256-mixture
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Code | Language | Hoursof | Hours per
speech phone
S1E English 4.15 0.095
S1S Spanish 2.82 0.10
S1l | Indonesian 2.78 0.099
S2E English 154 0.35
S2S Spanish 9.59 0.34
S3E English 164.05 3.73

Table 1: Summary of training data sets

GMM SBM was trained for each training database for use
with the HMMKS-SBM and SBMKY algorithms.

To facilitate ease of reference to the numerous model
sets, the label M16 is used when referring to 16-mixture
monophone models, M32 for 32-mixture monophone mod-
els, T16 for 16-mixture triphone models, and G256 for
SBM models. Furthermore, when referring to a model
trained on a specific training set, the name of the training
set is appended to the model label. Hence, a 16-mixture tri-
phone model set trained on the S2S training set is referred
to as the T16S2S model set whereas the SBM trained on
the S11 set is referred to as the G256S11 model set.

3.3. Evaluation procedure

The evaluation data sets consisted of approximately 40
minutes for each language. It was not possible to use a
larger evaluation set because of the limited amount of data
available for Indonesian and Spanish.

For English and Spanish, 180 unique words of medium
length (6 phones) were randomly selected for each lan-
guage and designated as the evaluation query word set. In
contrast only 150 words were selected for Indonesian as
there were only 153 unique medium-length words in the
Indonesian evaluation set. Table 2 summarises each evalu-
ation set. The ’instances of query words in eval data’ num-
ber corresponds to the number of instances of the words in
the query word set that occur in the evaluation data ie. the
total number of hits required to obtain a miss rate of 0%.

Code | Language | Minsof | Num Instances
speech | query | query words
words | in eval data
EE English 43.62 180 298
ES Spanish 39.60 180 353
El Indonesian | 41.40 150 349

Table 2: Summary of evaluation data sets.

Experiments were performed to evaluate the effect of
training database size on spotting and verification perfor-
mance for each of the three target languages. Additionally,
the experiments were repeated using the various model ar-
chitectures described in section 3.2. The evaluation proce-
dure used was:

1. Perform keyword spotting using HMMKS-SBM for
each word in the evaluation query word set on each
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utterance in the evaluation speech set.

2. Calculate miss and FA/keyword/hour rates. These re-
sults were termed the raw spotting miss rate and raw
spotting FA/kwd-hr rate.

3. Perform keyword verification using SBMKV on the
output of the keyword spotting stage.

4. Calculate miss, FA, and equal error rates (EERs) for
the SBMKYV output over a range of acceptance thresh-
olds. These results were termed the post verification
miss probabilities, post verification FA probabilities
and the post verification EERs.

4. Results

4.1. English and Spanish raw keyword spotting
experiments

Experiments were first performed to evaluate raw spot-
ting miss and FA rates for the various English and Span-
ish models. Of particular interest was the effect of training
database size on raw spotting miss rate, as this gives a lower
bound on the achievable miss rate for a successive keyword
verification stage. Each model set was evaluated on the ap-
propriate evaluation set for the language and using the SBM
trained on the same data set. Table 3 shows the results of
these experiments.

Model Miss | FA/kw-hr
rate
M16S1E | 4.0 929.2
M32S1E | 2.3 1214.4
T16S1E | 5.7 368.7
M16S2E | 2.7 965.7
M32S2E | 2.0 1361.1
T16S2E | 5.0 307.0
M16S3E | 3.7 945.6
M32S3E | 2.3 1374.6
T16S3E | 1.0 297.1
M16S1S | 7.6 818.1
M32S1S | 45 1110.8
T16S1S | 11.9 305.5
M16S2S | 6.2 918.4
M32S82S | 3.7 13215
T16S2S | 10.8 316.3

Table 3: Raw spotting rates for various model sets and
training database sizes

A number of observations can be made regarding the
raw spotting rates. Of note is that the Spanish miss rates
were much higher than the English miss rates. One expla-
nation for this poorer performance is that the average utter-
ance duration for the Spanish data was shorter than that of
the English data. Since CMS was being used, the shorter
utterance length could lead to poorer estimates for the cep-
stral mean, and therefore a decrease in recognition perfor-
mance. An equally likely explanation is that the Spanish
data was simply more difficult to recognise due to factors
such as increased speaking rate and background noise.

The results demonstrate that in most cases increased
training database size resulted in decreased miss rates and
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increased FA/kwd-hr. A decrease in miss rate is beneficial
as this reduces the lower bound for the minimum achiev-
able miss rate for a subsequent keyword verification stage.
Final post-verification FA may not necessarily be dramati-
cally impacted by increased FA/kwd-hr at this stage if the
verifier is able to prune the extra FAs. Interestingly though,
the absolute gains in miss rate were not particularly large.
Apart from the gain observed for the T16S3E system, the
other gains were below 2%, and in most cases below 1%.
This implies that FKSM miss rate is not dramatically af-
fected by training database size.

An unexpected result was that the English monophone
S3 models resulted in increased miss rates compared to the
corresponding S2 models. This is in opposition to trends
observed for the other experiments. A likely explanation
for this result is that the monophone architectures were too
simple to train compact discriminative models using the
larger S3 database.

Performance gains also varied with model architecture.
While the M16 and M32 architectures outperformed the
T16 architectures for the smaller S1 and S2 training data
sets, the converse was observed for the S3 experiments.
This suggests that there was insufficient data to train ro-
bust triphone models for smaller training data sets and too
much data to produce robust monophone models for the
large training data sets.

The triphone architectures also provided significantly
lower FA/kw-hr rate than the monophone architectures for
all training data set sizes. One may argue that this is simply
a trade-off in performance - a lower FA/kw-hr result in ex-
change for a higher miss rate. This appears to be the case
for the Spanish experiments. However, in the English ex-
periments, both miss rate and FA/kw-hr rates decreased as
training data size was increased. From these limited set of
experiments, it is not possible to determine whether the tri-
phone architecture truly provides an increase in both rates
or simply a trade off between the two measures.

Overall, increased training database size does yield im-
proved performance in miss rate, though the gains are not
dramatic unless very large database sizes are used. For
S1 and S2 sized databases, the monophone architectures
yielded more favorable miss rates at the expense of signifi-
cantly higher FA/kw-hr rates.

4.2. English and Spanish post keyword verification
experiments

Joint HMMKS-SBM/SBMKYV performance was evalu-
ated for the various English and Spanish training databases
and model architectures. The aim of these experiments was
to determine the effect of training database size on the final
keyword spotting performance for a combined HMMKS-
SBM/SBMKYV system, as opposed to the effect on iso-
lated SBMKV. This is because in practice the same data
sets would be used when training models for the spotting
and verification stages. Hence HMMKS-SBM followed by
SBMKYV was performed and the final miss and FA proba-
bilities at a range of acceptance thresholds were measured.

Table 4 shows the EERs after SBMKYV for the various
English and Spanish model types. Figures 1, 2 and 3 show
the detection error trade-off plots for the T16, M16 and
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M32 experiments respectively. A number of trends can be
seen in these results.

Model EER Model EER
rate rate
M16S1E | 22.2 || M16S1S | 25.8
M32S1E | 19.1 || M32S1S | 24.4
T16S1E | 18.1 || T16S1S | 28.7
M16S2E | 19.8 || M16S2S | 25.2
M32S2E | 17.8 || M32S2S | 22.6
T16S2E | 17.8 || T16S2S | 26.9
M16S3E | 20.5
M32S3E | 18.5
T16S3E | 13.0

Table 4: Equal error rates after SBMKV for various model
sets and training database sizes
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Figure 1: Detection error trade-off for T16 SBMKV ex-

periments. 1=T16S3E, 2=T16S2E, 3=T16S1E, 4=T16S2S,
5=T16S1S

Of note is the gain in performance between the S1 and
S2 systems given a fixed model architecture. In most cases,
increasing the amount of training data from the S1 to S2
database size resulted in absolute gains of approximately 1-
2% in EER. Further increasing the database size as done in
the S3 experiments resulted in gains for the triphone system
only (4.8% absolute).

This is a positive result, indicating that the relatively
small increase in training database size between S1 and S2
provided a tangible gain in performance. Furthermore, the
fact that a significantly larger training database only yielded
a 4.8% absolute gain for the T16S3E experiment suggests
that returns diminish with increases in training database
size.

This observation has important ramifications for the de-
velopment and deployment of keyword spotting systems. It
indicates that HMMKS-SBM/SBMKYV systems trained on
relatively small databases are able to achieve performances

Proceedings of the 10th Australian International Conference on Speech Science & Technology

Macquarie University, Sydney, December 8 to 10, 2004. Copyright, Australian Speech Science & Technology Association Inc.

Accepted after full paper review



40 -

20

10

Miss probability (in %)
o

05 [

02

0.1r

o102 05 1 2 5 10 2 20
False Alarm probability (in %)
Figure 2: Detection error trade-off for M16 SBMKYV exper-

iments. 1=M16S3E, 2=M16S2E, 3=M16S1E, 4=M16S2S,
5=M16S1S
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Figure 3: Detection error trade-off for M32 SBMKYV exper-

iments. 1=M32S3E, 2=M32S2E, 3=M32S1E, 4=M32S2S,
5=M32S51S

well within an order of magnitude of systems trained us-
ing significantly larger databases. Depending on the target
application, this loss in performance may be an acceptable
trade-off for the time and monetary costs of obtaining larger
databases.

Another observation is the difference in EER gains ob-
served for English triphone systems over English mono-
phone systems compared to those observed for the equiv-
alent Spanish systems. In all cases, the English triphone
systems markedly outperformed the monophone systems,
whereas for Spanish, the triphone systems yielded consid-
erably lower EERs compared to the monophone systems.
Further analysis of the data revealed that for the S1S and
S2S evaluations, the M32 systems outperformed the per-
formance of the T16 systems at all operating points (see
figure 4).

One possible explanation for the disparity in perfor-
mance gains between the English and Spanish triphone sys-
tems is the decision tree clustering process used during tri-
phone training. The question set used for the English deci-
sion tree clustering process was a well established and well
tested question set, whereas the Spanish question set was
a relatively new question set constructed for this particular
set of experiments. Although much care was taken in build-
ing the Spanish question set and in removing any errors, it
is possible that the nature of the phonetic questions asked,
though relevant and applicable to English, were not suitable
for Spanish decision tree clustering.

In summary, the experiments demonstrate that although
some gains in performance were achieved using larger
training databases, the magnitude of these gains were not
dramatic and may not justify the costs of obtaining such
databases. For smaller-sized databases, the M32 architec-
ture resulted in more robust performance for Spanish key-
word spotting, though this may be due to issues with the
triphone training procedures for Spanish.
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Figure 4: Detection error trade-off for S2S SBMKV experi-
ments. 1=T16S2S, 2=M16S2S, 3=M3252S

4.3. Indonesian Keyword spotting and verification

experiments

Given the results and trends observed in the English and
Spanish experiments, evaluations were performed using the
small amount of available Indonesian data to obtain base-
line keyword spotting performance. Table 5 and figure 5
show the results of these experiments.

Model | Raw spot | Raw spot | Post-verifier
miss rate | FA/kw-hr EER
M16S1I 3.4 393.2 22.0
M32S1I 3.0 439.1 21.0
T16S1I 3.4 394.8 22.0

Table 5: Raw spotting and post verification results for S1I
experiments
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Figure 5: Detection error trade-off plot for S11 SBMKYV ex-
periments. 1=T16S1l, 2=M16S1l, 3=M32S1I

Raw spotting performance results were not as diverse
as those observed for English and Spanish - all models
yielded similar miss rates and comparable FA/kw-hr rates.
In contrast, the trends for post-verifier EER were similar to
that observed for Spanish, with the M32 architecture yield-
ing the best EER performance and in fact the best perfor-
mance at most other operating points. Ultimately though,
as demonstrated by figure 5, the post verification perfor-
mance for all model types were very close, being within
1% absolute in most cases.

Given the consistent 1-2% EER gain observed when in-
creasing from S1 to S2 sized training data sets for the En-
glish and Spanish experiments, it is reasonable to postulate
that similar gains in EER would be observed in Indonesian.
However, any such extrapolations would have a low degree
of confidence since there are many language-specific fac-
tors that could increase or decrease these gains. All things
being equal though, it would not be unreasonable to expect
asimilar 1-2% gain in EER for a S2-sized training database.

Extrapolations regarding expected EER gain for a S3-
sized database would have an even lower degree of confi-
dence than those for the S2-sized database since consistent
trends were not observed in the S3E experiments across
the various model types. Difficulties of extrapolation are
further compounded by the fact that the trends in triphone
performance observed for English were different to those
observed for Spanish, potentially due to problems with the
Spanish triphone training methods. Nevertheless it is rea-
sonable to assume that an Indonesian S3-trained triphone
system would not outperform a T16S3E system in light of
the poorer Indonesian S1 performance. Therefore at the
very best, a properly trained Indonesian S3-trained triphone
system would achieve an EER equal to the T16S3E sys-
tem (12.5%). More realistically though, one would expect
a T16S3I EER in the vicinity of 14-16% (1-2% S2 EER
gain plus 4-5% S3 EER gain) given the 4.8% EER gain ob-
served for the T16S3E system over the T16S2E system.
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5. Conclusions

The experiments demonstrate that the development and
deployment of a non-English HMMKS-SBM/SBMKYV us-
ing small training databases is realistic and not overly sub-
optimal. Though some gains can be obtained through in-
creased training database size, the magnitude of gains (eg.
the very best being 4.8% for a triphone English system)
may not necessarily justify the effort of collecting and tran-
scribing a significantly larger training database. This is
particularly relevant for non-English target domains where
data collection and transcription is markedly more difficult
and costly. For the present, non-English keyword spot-
ting systems can feasibly be developed with small training
databases and still achieve performances close to that of a
system trained using a very large database.

In addition, the experiments show that a M32 system is
more robust than a T16 system for non-English keyword
HMMKS-SBM/SBMKYV keyword spotting using smaller
sized training databases. However, this may be a result
of inappropriate non-English triphone training procedures
since the English 16-mixture triphone system did yield
better performance than corresponding 32-mixture mono-
phone system for the smaller sized databases.

Low confidence extrapolations were also made regard-
ing expected equal error rate gains for an Indonesian
HMMKS-SBM/SBMKY keyword spotting system trained
on a large database. A system trained on 2.8 hours of
training data yielded an EER of 21.0% using a 32-mixture
monophone model set. Trends seen in English and Spanish
imply an Indonesian HMMKS-SBM/SBMKY EER gain of
1-2% using a 9.6 hour database and a further gain of 4-5%
using a significantly larger training database.
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