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Abstract

This paper investigates the use of higher order spectra JHB®8se features in the task of
speaker identification. Within the speech processing conityjwshort time spectral phase in-
formation is widely regarded as unimportant for speakeogaition. Features are generally
defined from the magnitude spectrum only. This paper usilfsatures that contain both mag-
nitude and phase spectral information. These HOS phaserésatre derived by integrating
points along a straight line in bifrequency space. Initigderiments used unconstrained, micro-
phone speech from a 20 male speaker database to constrigdi@amixture models (GMM)
for each speaker. The HOS phase features achieve a comatfichtion rate of 98.5%, which
is similar to the rate achieved by the MFCC feature set (99.49ther experiments were con-
ducted on the larger YOHO database of 138 speakers. Avergectidentification rates of
above 95% were achieved for varying populations sizes upetdull 138 speakers.

1. Introduction 2. Higher Order Spectra

: e . I While the power spectrum is derived fragacondorder
Speaker identification is concerned with establishing_, _.. .. . . L
. . statistics, HOS are derived froligherorder statistics. The
the correct identity of the person (from a known set) us-

. . . g i i f I he Fouri
ing speech as a biometric. This is generally performed b bispectrum and trispectrum, for example, are the Fourier

extracting features from the aiven speech sianal. and Cor%f_ransforms of the third and fourth order correlatibakthe
: 9 . 9 P gnai, .signal respectively. If:(¢) is a stationary random process,
paring them with a stored set of feature models belonglnq o~ ih
L : .= then itsn'® order momentsmn,, (71, 72, ..., Th—1), Can be
to known speakers. Applications of speaker identification

. - ..~ defined as
include secure access systems and forensic investigation.

Most speech features used in speaker recognition (idenn,, (71, 72, ..., Th—1) = E [x(t)x(t + 1) ... 2(t + Th_1)]
tification or verification) systems are derived from second (1)
order statistics, using linear prediction or the power specwhereE|[ ] is the expected—value operator. The power spec-
trum. Mel frequency cepstral coefficients (MFCC), for ex- trum is defined as the Fourier transformsof (). The
ample, are derived from the power spectrum. MFCC haveower spectrum at frequengy can be estimated by
been shown to provide good results in speaker recogni-
tion (Reynolds and Rose 1995; Reynolds 1995; Liu, He., Pe(fi) = E[X(f1)X"(f1)] )
and Palm 1996; Cordella, Foggl_a, Sansone, _and Vema/hereX(f) is the Fourier transform of a windowed reali-
2003). These features, however, ignore phase mformatlogation of() and* represents complex conjugation. Simi-
in the Fourier spectrum. While most of the perceptual im‘or-Iarly the bispectrum and trispectrum can be estima.ted by
mation about speech resides in the amplitude, phase infor- "
mation has also been shown to be important (Pobloth and B.(f1, f2) = E[X(f)X(f2)X*(f1 + f2)] (3)
Kleijn 1999).

In this paper, we utilise a set of features derived fromand
higher order spectra (HOS) (Chandran and Elgar 1993 . .

The performance of these features is compared with MFC e(fi, fo, f3) = BIX(F)X (L)X (F) X7 (i + fo + f(%
features in identical speaker identification systems. Th?espectively
sensitivity of each feature set to additive white Gaussian '

. . o : Equation 2 shows that the power spectrum is com-
noise (AWGN) under mismatched training and testing Corl'pIeter defined by the magnitude of the Fourier coefficients.
ditions is also compared.

_ . . _ Equations 3 and 4, however, show that the bispectrum and
Section 2. introduces HOS and section 3. describes thgispectrum retain both the phase and amplitude informa-

HOS phase parameters used as features. Section 4. dgsn from the Fourier transform. This is true for HOS in
scribes the setup of the speaker identification experimentgeneral.

Section 5. presents the results on each of the experiments

P?fqum?d, aF:companied by a brief discussion. A conclu-  i7hjs refers to moment based spectra as opposed to cumulant
sion is given in section 6.. based spectra. For more information, see (Chandran 1994).
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Another important property of the bispectrum is that is A
has zero expected value for Gaussian signals. Features that
are derived from the bispectrum will therefore have high
immunity to AWGN when the bispectra are averaged from
multiple realisations of the signal. In fact, even with asin
gle realisation, it was shown (Chandran and Elgar 1993) f
that noise rejection still results from the averaging that o 2 f,=af, -
curs if we integrate many bispectral values along a radial
line in bifrequency space. This process of integration is ex
plained further in section 3.. :
References to seminal and review papers in the field of
HOS can be found in the reference lists of (Elgar and Chan- fy
dran 1993) and (Chandran and Elgar 1993).

05—

\j

Figure 1:Region of computation of the bispectrum for real
3. HOS Phase Features signals. Features are calculated by integrating the bispec

The features used in our experiments are derived front1rum along the dashed line with slope=

the discrete bispectrum of deterministic signals. The bis-
pectrum of a one—dimensional, deterministic, discretetim

signal,z(n), is defined here by be used for speaker identification. For good discriminabil-
ity between speakers, the feature set must be sensitive to
B(f1, f2) = X(f1)X(f2) X*(f1 + f2) (5) small changes in the shape of the signal between speakers

hereX(f) is the di ime Fouri ¢ for the same speech. At the same time, the features must be
where ({) '3 tf e discrete tll\rlne C;}UFIEL.'[I’a.nS o(rjm@(fn). invariant or robust to changes in amplitude (decibel-lpvel
at normalise requency, Note that this Is a determin- ,,q time_shifts caused by changes in sampling or segmen-
istic framework and there is no expectation operation ONMation. The phase of the integral in equation 7 is shown

the right hand side. If the one—dimensional signal is di-, po ihyariant to translation, scaling, amplification, and
vided into blocks, the triple products above can be average C—shifting (Chandran and Elgar 1993). If features are ro-

to yie_Id the more conver?tiqnallestimate of J.[he biSpeCtru"bust to such transformations, there is less intra—class var
used in hlgher—orderstatlstlcs, |.e.,_the Fourier tramsfof ance and the probability density will be more dependent
the third-order correfation of the signal. A set of features,, changes that discriminate between speakers. In the re-
based on bispectral phases was derlve_d by Chandran a%inder of this paper, any mention of ‘HOS phase parame-
Elgar (Chandran and Elgar 1993), and is described brlemfers (or features)’ refers to the set of parameters defined by

below. . : . L . equation 6.
Assuming there is no bispectral aliasing, the bispectrum
of a real signal is uniquely defined within the triangle< 4. Experimental Setup

fo < fi < fi+ fo < 1. Parameters are obtained by . I .
integrating along straight lines passing through the oiiigi Speaker identification experiments were performed us-

bifrequency space. The region of computation and line 01;”9 H?js phase parameters, but ?xpenments were also per-
integration are depicted in Fig. 1. The bispectral invaian '0rMed using MFCC parameters for comparative purposes.

P(a), is the phase of the integrated bispectrum along th part from the features used, the experimental setup for
radial line with slope equal to. This is defined by oth were identical. The following subsections descrilee th

setup of these experiments.

P(a) = arctan (? ((Z))) (6) 4.1. Speechdata
" The speech for the first set of experiments was ob-
where tained from the multi-modal task evaluation data used in
o) = I(a)+jlia) the 2002 National Institute of Standards and Technology
" ‘ (NIST) speaker recognition evaluation. We used the train-
_ /1+a B(f1,af)df: ) ing data from the spontaneous speech recorded via a high
Fi=0+ ’ quality tabletop microphone. The data consists of 4 ses-
sions of speech, each being 29 seconds in length. 3 sessions
for0 <a<1,andj = /1. were used for training, and the final session was used for

The variabled, andI; refer to the real and imaginary testing. Each session was recorded using the same micro-
parts of the integrated bispectrum respectively. The HO$hone and sampled at 16 kHz, but we first filter and down-
phase parameters exploit the relationship between the@shapample each of the speech files to 8 kHz before processing.
of a deterministic signal (or block of speech) and the phasé total of 20 male speakers was used in this experiment.
of its deterministic bispectrum. This shape contains infor ~ The speech for our second set of experiments was ob-
mation about speech and speaker, as do Mel-Cepstral fetained from the YOHO voice verification corpus (Campbell
tures. A statistical model of features, such as a Gaussiadr. 1995). This corpus consists of 138 speakers (106 males,
mixture, that is trained over many speech blocks from the82 females). Each speaker has 4 enrollment sessions of 24
speaker will tend to become speech independent and cartterances each (total of 96), and 10 verification sessibns o
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4 utterances each (total of 40). These are all prompted conthe speaker based on the following:
bination lock phrases, so only digits are spoken. Speech R
is recorded via a high quality telephone handset (but not S =arg max p(X[Ar) (8)
passed through a telephone channel) and sampled at 8 kHz. -

where);, is the GMM for thek!" speaker. Assuming inde-

pendence between observations, this becomes:
Before features are calculated, the input speech frame,

x(n), is first classified as voiced, unvoiced, or silence. . T -

Only the voiced speech frames are utilised in these ex- S =arg max ZIOgP(xtp‘k) ©)
periments, since voiced segments contain the appropriate o=l

harmonic structure that give rise to significant bispectralynere

values (Wells 1985; B.Boyanov, Hadjitodorov, and Ivanov M

1991; Fackrell and McLaughlin 1994). The voicing de- p(zi|\) = Zpibi(ft) (10)
cision is determined using the algorithm from the LPC- i=1

10E speech coder (Campbell Jr and Tremain 1986). Sincgq b;(Z,) is thei™® component of the multivariate Gaus-

the speech data from each of the speakers have varyingsn mixture density evaluated for the feature vecior,
amounts of voiced speech, the amount of data used foéndpi’s are the priors (mixture weights).

training and testing is not the same for each of the speakers.

Each frame of speech;(n), consists of 256 samples 4.5. Performance Evaluation
with a frame advance (hop) of 80 samples. This equates to 1o evaluate the speaker identification system, the test
32 ms and 10 ms respectively, hence 100 frames are prepeech is divided into overlapping segments of observation
cessed every second. For the HOS phase features, the bé%quences. Each sequence consistsef200 feature vec-
pectrum is calculated from eaoffn) and the parameters, o5, corresponding to 2 second utterances. An observation
P(a;), are determined, wherg = i/D andi = 1...D.  advance of 10 ms is used, hence each sequence differs from

In this work we choose) = 16, therefore, we obtain a the previous sequence by only one feature vector. For ex-
feature vectorof 16 integrated phase parameters for eachympje, the first two segments would be

x(n). These phase parameters are not unwrapped such that

4.2. Feature Extraction

Segment 1

—m < P(a;) < . Atotal of 12 parameters are calculated —_— .

for each MECC feature vector. L1225 5 BT+, LT 42 - -
Segment 2

4.3. Speaker Modelling T1, %oy, T, Ta1, TTao,. ..

Each speaker’s collection of feature vectors needs to be
modelled in a manner that will allow us to effectively distin For each segment, equation 9 is used to determine the
guish one speaker from another. We choose a probabilistigPeaker which gives the maximum probability for the ob-
model, specifically a Gaussian mixture model (GMM), to servation sequence. This is repeated for all the possible
represent the distribution of these feature vectors. A GMvsegments in the length of the test speech and across all the
is simply a weighted sum af/ Gaussian densities, and in SPeakers in the database. The correct identification rate is
this work, the densities are multivariate. GMM's are popu-then calculated as
!ar in speaker recogni?ior? systems for two reasons. Firstly % Correct Identification=
it is assumed that the individual components are capable of _ .
modelling some underlying set of broad phonetic events, ~ 1otal # of correctly identified segments. . (11)
e.g. vowels, fricatives (Reynolds and Rose 1995). Sec- Total # of segments
ondly, a GMM is capable of smoothly approximating many . .
arbitrarily shaped d?ensities. An explanggon of GMM’s and 5. Results and Discussion
procedures for estimation of their mixture weights and den5.1.  Speaker Identification Using NIST Speech Data
sities are given in (Reynolds and Rose 1995). After estimat-  The first set of experiments used the NIST speech data
ing the GMM from a particular speaker’s training speech,to evaluate the basic speaker recognition system described
he/she is represented by the modek {p;, ii;, X;}, where  in section 4.. Speaker models were trained using the 16
i = 1...M, andp;, fi; andX; are the mixture weight, integrated phase parameters extracted from each voiced
mean vector and covariance matrix of tHé mixture re-  frame of the training speech. The test speech from each
spectively. In this work, diagonal covariance matrices arespeaker was then stochastically compared with each of

used. these models. The correct identification rate was computed
o using the procedure outlined in sections 4.4. and 4.5..dJsin
4.4. Speaker Identification the HOS phase parameters as features, the 20 male speaker

To perform speaker identification, the goal is to find system achieved a correct identification rate of 98.5%. It
which, out of a group of speaker models, is most likely to must be noted, however, that this result is biased since the
produce the observation sequen&e~= {Z1,...,Zr}. X amount of training and testing speech differs between the
is simply a sequence df feature vectors extracted from the speakers.
given speech. Assuming equally likely speakers and noting From the above result, it is evident that phase based pa-
thatp(X) is the same for all speaker models, we classifyrameters can be useful for speaker identification. Even if
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Correct Identification vs. Population Size for Varying Test Lengths

the short time Fourier phase spectrum is not directly useful
for the task, parameters can be defined from higher-order
spectra that capture useful information including thatrfro
the phase spectrum. The simple speaker identification ex-
periment above shows that the integrated bispectral phase
parameters hold important information capable of discern-
ing known speakers within a database.

For comparison, a second speaker identification exper-
iment was performed using the same NIST speech data.
This experiment was almost identical to the first, with the
only difference being the choice of feature vectors. A set of
12 MFCC parameters were used instead of the 16 integrated ‘ ‘ ‘ ‘ ‘ ‘
phase parameters. The MFCC based system achieved a cor- N B T s
rect identification rate of 99.4%. _ ) o

From this result we can see that the HOS phase paranll:-'gure 2: Avgrage correctidentification rate_s forthe_ YOHO
eters can produce comparable results to the more widelffdt@base using HOS phase parameters with varying popu-

used MFCC parameters when utilised as features in a sim@tion size and varying lengths of voiced test speech. (All

ple speaker identification task. When the test segment uséfl® st utterances from a single speaker are concatenated

for identification is increased from 2 seconds to 4 seconddt© @ single utterance). For each population size, 20 tests
the correct identification rate improves to 100% for bothVereé performed using a different set of randomly selected
feature sets. speakers (except when S=138).

ent Correct Identification

Perc

5.2. Speaker Identification Using YOHO Speech Data

Having shown that the HOS phase parameters are an ef-
fective set of features for microphone quality speech fromraple 1: Data from figure 2. The standard deviation for

a small speaker database, our next objective was to extergych set of tests is given in brackets below the mean.
these results to larger populations. For these next experi-

ments we use the YOHO speech database. This allows us [est Bopulation Size

to test the HOS phase parameters on a population of up to Lefsgth 82107 7‘(1508 7200 68804 é;)% éj% é;*z

138 speakers. There is, however, a major difference be- o | G4 | 22| @3 | 09 | 06 '

tween this YOHO data and the aforementioned NIST data. 2s 91151 82852 81552 812-29 %Zél 80067 79.6

The NIST data is comprised of continuous unconstrained 7S (95_3 (94_7) (92'_7) (917) (91'_33 (95_7) 500

speech, whereas the YOHO data consists solely of dual (14 | 14 | A7 | 1.2) | 0.9 | (0.7)

digit numbers within combination lock phrases. An ex- * 1ol anlanl ol colon| ™

ample of such a phrase is "twenty—six, eighty—one, fifty— 10s | 987 | 978 | 963 | 96.4 | 958 | 95.7 | 95.4
@e) | @7 | @n | @1 | ©.8) | (0.5

seven”. In addition, the YOHO database was designed to
be evaluated by classifying each individual test utterance
independently of each other. In order to remain consistent
with the procedure described in section 4.5. however, we
have concatenated all the individual test utterances from %ngth and increasing population sizes on the correct iden-
particular speaker into one single test utterange. we “Afication rates. From the graph in figure 2, we can see that
then evaluate the perforr_nance of our system n the sam rsmallT’, the percent correct identification rate decreases
way that we have done with the previous experiment.

. . more rapidly asS increases than for whéhis large. With

The corr_ect identification _rates for HOS phase paramey _ 10 the HOS phase parameters maintains an average
_ters for varying I_engths of Vo |ceq tPTSt speethand vary- percent correct identification rate above 95%.
ing population sizes$, are given in figure 2. Each point on
the graph is the average of 20 different tests (except when We should also mention that preliminary tests were per-
S=138), and in each test, the speakers are randomly chosésrmed using the YOHO database as it was intended to be
from the complete database of 138 speakers. The mean valsed, i.e., classifying each individual test utteranceasep
ues and their standard deviations are given in table 1. Neately. The results from a single test with varying popula-
effort has been made to bias the number of male or femalgon size are given in table 2. Note that we did not perform
speakers within the different population sizes. multiple tests for each population size and average the re-

For the case whefA = 20 andL = 2s, we obtained a sults like in table 1. Since each test utterance consisis onl
correct identification rate of only 91.1% (SD=1.4) for this of 3 double digit numbers, the actual amount of test data
YOHO data as opposed to 98.5% for the NIST data. Thisafter extracting voiced frames was sometimes as little as
may be due to the differing nature of the speech within eacl®.5 seconds. We believe that this was a major influence in
database. Ideally we would have liked to use a large populahe low correct identification rates. It is interesting tdeo
tion microphone database with unconstrained speech, hovirowever, that the performance increases by 6-10% when
ever, the YOHO database was the closest we had access the number of mixtures used in the GMM is increased to
It was still useful to study the effects of varying test sgeec 128.
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Speech

Table 2: Percent correct identification rates for the YOHO frame x(n) X(K) set
database using HOS phase parameters with varying popu- DFT X =1
lation sizes. Each utterance is classified independently of [X09 =/ X
each other, as the database was intended to be used. Re-
sults are given when using both 32 and 128 mixtures for
the GMM's.
X(K) x(n) Extract
# of # of Mixtures IDFT Features
Speakers| 32 128

20 77.0| 84.0

40 72.8 | 827

60 | 69.4| 784 (@)

80 68.3 | 76.9

100 | 66.0| 75.1 Speech Set

120 65.0 | 74.6 M DFT X(k) X = XK

138 | 64.3] 73.9 / X(k) = random

5.3. Speaker Identification Using ‘Phase Only’ and
‘Magnitude Only’ Speech Data X(K) () Extract

HOS integrated phase parameters contain both phase o Features
and magnitude spectral information. In order to establish
that there is indeed a contribution to speaker discrimamati
from the phase, we performed additional tests using ‘phase (b)
only’ and ‘magnitude only’ speech data. In these tests, pre-
processing was performed on each frame of speegh), Figure 3:Preprocessing required to (a) preserve the phase
to discard either magnitude or phase information before thépectral information while discarding the magnitude infor
features were extracted. The steps involved in discardingiation, and (b) preserve the magnitude spectral informa-
magnitude information while preserving phase informationtion while discarding the phase information.
are given in figure 3(a)).

This procedure is identical to that used by Oppenheim
et al. (Oppenheim, Lim, Kopec, and Pohlig 1979) excepthand, can on its own provide a feature set that performs
that we are processing short time segments of speech asasonably well for speaker identification, even when the
opposed to long time segments. The steps involved in dispower spectrum has been whitened.
carding phase information while preserving magnitude in- |t js well known that Fourier phase is more robust to
formation are given in figure 3(b)). additive noise than Fourier magnitude. The results in this

The overall correct identification rates using the ‘mag-section suggest that the HOS phase feature set would be
nitude only’ and ‘phase only’ speech data for both MFCCmgore robust to such noise.

and HOS phase parameter sets are given in table 3. The
results using the original speech are also included for com5.4. Effects of ANGN
parison. Experiments were also performed to compare the ef-
Since MFCC parameters are derived from the magnifects of AWGN at varying signal-to—noise ratios (SNR), on
tude spectrum, the loss of phase spectral information doake correct identification rate for each feature set. The re-
not have an effect on its performance. The loss of magnisults of these tests are illustrated in figure 4. In each afgthe
tude spectral information, however, causes the MFCC systests, the speaker models remained trained on clean speech,
tem to fail. The correct identification rate for MFCC was however, WGN was added to each of the test speech utter-
5.65% when using 'phase only’ data. This is approximatelyances. We therefore have mismatched training and testing
the same as guessing 1 person from a group of 20 speaket®nditions, which is more typical of real operating condi-
The correct identification rate for the HOS phase pa-tions. No other changes were made to the original setup
rameters using ‘magnitude only’ and ‘phase only’ speechdescribed in section 4.. Even though techniques exist, such
was 16.4 % and 77.3 % respectively. Since the magnitudas cepstral mean subtraction (Atal 1974) and RASTA (Her-
information is not neglected completely in their calcwdati mansky and Morgan 1994) processing, to make MFCC’s
(they provide a weighting for the integrated phases), thanore robust to channel mismatch, we wished to keep both
‘magnitude only’ data performs better than the equivalensystems identical apart from the feature set. It should also
guessing rate of 5 %. The integrated magnitudes tend tbe noted that less testing speech is available in the pres-
provide aradial spectrum across the different valuesaof ence of AWGN, especially at low SNR’s. This is because
in P(a). These magnitudes on their own, however, do nothe system only utilises the voiced speech frames of each
provide us with sufficient information to discern betweenspeaker.
speakers. The integrated phase information, on the other As the SNR is decreased from 30dB to 5dB, the cor-
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