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Abstract
This paper investigates the use of higher order spectra (HOS) phase features in the task of
speaker identification. Within the speech processing community, short time spectral phase in-
formation is widely regarded as unimportant for speaker recognition. Features are generally
defined from the magnitude spectrum only. This paper utilises features that contain both mag-
nitude and phase spectral information. These HOS phase features are derived by integrating
points along a straight line in bifrequency space. Initial experiments used unconstrained, micro-
phone speech from a 20 male speaker database to construct Gaussian mixture models (GMM)
for each speaker. The HOS phase features achieve a correct identification rate of 98.5%, which
is similar to the rate achieved by the MFCC feature set (99.4%). Other experiments were con-
ducted on the larger YOHO database of 138 speakers. Average correct identification rates of
above 95% were achieved for varying populations sizes up to the full 138 speakers.

1. Introduction

Speaker identification is concerned with establishing
the correct identity of the person (from a known set) us-
ing speech as a biometric. This is generally performed by
extracting features from the given speech signal, and com-
paring them with a stored set of feature models belonging
to known speakers. Applications of speaker identification
include secure access systems and forensic investigation.

Most speech features used in speaker recognition (iden-
tification or verification) systems are derived from second
order statistics, using linear prediction or the power spec-
trum. Mel frequency cepstral coefficients (MFCC), for ex-
ample, are derived from the power spectrum. MFCC have
been shown to provide good results in speaker recogni-
tion (Reynolds and Rose 1995; Reynolds 1995; Liu, He.,
and Palm 1996; Cordella, Foggia, Sansone, and Vento
2003). These features, however, ignore phase information
in the Fourier spectrum. While most of the perceptual infor-
mation about speech resides in the amplitude, phase infor-
mation has also been shown to be important (Pobloth and
Kleijn 1999).

In this paper, we utilise a set of features derived from
higher order spectra (HOS) (Chandran and Elgar 1993).
The performance of these features is compared with MFCC
features in identical speaker identification systems. The
sensitivity of each feature set to additive white Gaussian
noise (AWGN) under mismatched training and testing con-
ditions is also compared.

Section 2. introduces HOS and section 3. describes the
HOS phase parameters used as features. Section 4. de-
scribes the setup of the speaker identification experiments.
Section 5. presents the results on each of the experiments
performed, accompanied by a brief discussion. A conclu-
sion is given in section 6..

2. Higher Order Spectra
While the power spectrum is derived fromsecondorder

statistics, HOS are derived fromhigherorder statistics. The
bispectrum and trispectrum, for example, are the Fourier
transforms of the third and fourth order correlations1 of the
signal respectively. Ifx(t) is a stationary random process,
then itsnth order moments,mn(τ1, τ2, . . . , τn−1), can be
defined as

mn(τ1, τ2, . . . , τn−1) = E [x(t)x(t + τ1) . . . x(t + τn−1)]
(1)

whereE[·] is the expected–value operator. The power spec-
trum is defined as the Fourier transform ofm2(τ1). The
power spectrum at frequencyf1 can be estimated by

Pe(f1) = E [X(f1)X
∗(f1)] (2)

whereX(f) is the Fourier transform of a windowed reali-
sation ofx(t) and∗ represents complex conjugation. Simi-
larly, the bispectrum and trispectrum can be estimated by

Be(f1, f2) = E [X(f1)X(f2)X
∗(f1 + f2)] (3)

and

Te(f1, f2, f3) = E [X(f1)X(f2)X(f3)X
∗(f1 + f2 + f3)]

(4)
respectively.

Equation 2 shows that the power spectrum is com-
pletely defined by the magnitude of the Fourier coefficients.
Equations 3 and 4, however, show that the bispectrum and
trispectrum retain both the phase and amplitude informa-
tion from the Fourier transform. This is true for HOS in
general.

1This refers to moment based spectra as opposed to cumulant
based spectra. For more information, see (Chandran 1994).
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Another important property of the bispectrum is that is
has zero expected value for Gaussian signals. Features that
are derived from the bispectrum will therefore have high
immunity to AWGN when the bispectra are averaged from
multiple realisations of the signal. In fact, even with a sin-
gle realisation, it was shown (Chandran and Elgar 1993)
that noise rejection still results from the averaging that oc-
curs if we integrate many bispectral values along a radial
line in bifrequency space. This process of integration is ex-
plained further in section 3..

References to seminal and review papers in the field of
HOS can be found in the reference lists of (Elgar and Chan-
dran 1993) and (Chandran and Elgar 1993).

3. HOS Phase Features
The features used in our experiments are derived from

the discrete bispectrum of deterministic signals. The bis-
pectrum of a one–dimensional, deterministic, discrete time
signal,x(n), is defined here by

B(f1, f2) = X(f1)X(f2)X
∗(f1 + f2) (5)

whereX(f) is the discrete time Fourier transform ofx(n)
at normalised frequency,f . Note that this is a determin-
istic framework and there is no expectation operation on
the right hand side. If the one–dimensional signal is di-
vided into blocks, the triple products above can be averaged
to yield the more conventional estimate of the bispectrum
used in higher-order statistics, i.e., the Fourier transform of
the third-order correlation of the signal. A set of features
based on bispectral phases was derived by Chandran and
Elgar (Chandran and Elgar 1993), and is described briefly
below.

Assuming there is no bispectral aliasing, the bispectrum
of a real signal is uniquely defined within the triangle0 ≤
f2 ≤ f1 ≤ f1 + f2 ≤ 1. Parameters are obtained by
integrating along straight lines passing through the origin in
bifrequency space. The region of computation and line of
integration are depicted in Fig. 1. The bispectral invariant,
P (a), is the phase of the integrated bispectrum along the
radial line with slope equal toa. This is defined by

P (a) = arctan

(
Ii(a)

Ir(a)

)

(6)

where

I(a) = Ir(a) + jIi(a)

=

∫ 1
1+a

f1=0+

B(f1, af1)df1 (7)

for 0 < a ≤ 1, andj =
√
−1.

The variablesIr andIi refer to the real and imaginary
parts of the integrated bispectrum respectively. The HOS
phase parameters exploit the relationship between the shape
of a deterministic signal (or block of speech) and the phase
of its deterministic bispectrum. This shape contains infor-
mation about speech and speaker, as do Mel-Cepstral fea-
tures. A statistical model of features, such as a Gaussian
mixture, that is trained over many speech blocks from the
speaker will tend to become speech independent and can
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Figure 1:Region of computation of the bispectrum for real
signals. Features are calculated by integrating the bispec-
trum along the dashed line with slope=a.

be used for speaker identification. For good discriminabil-
ity between speakers, the feature set must be sensitive to
small changes in the shape of the signal between speakers
for the same speech. At the same time, the features must be
invariant or robust to changes in amplitude (decibel-level)
and time-shifts caused by changes in sampling or segmen-
tation. The phase of the integral in equation 7 is shown
to be invariant to translation, scaling, amplification, and
DC–shifting (Chandran and Elgar 1993). If features are ro-
bust to such transformations, there is less intra–class vari-
ance and the probability density will be more dependent
on changes that discriminate between speakers. In the re-
mainder of this paper, any mention of ‘HOS phase parame-
ters (or features)’ refers to the set of parameters defined by
equation 6.

4. Experimental Setup
Speaker identification experiments were performed us-

ing HOS phase parameters, but experiments were also per-
formed using MFCC parameters for comparative purposes.
Apart from the features used, the experimental setup for
both were identical. The following subsections describe the
setup of these experiments.

4.1. Speech data

The speech for the first set of experiments was ob-
tained from the multi-modal task evaluation data used in
the 2002 National Institute of Standards and Technology
(NIST) speaker recognition evaluation. We used the train-
ing data from the spontaneous speech recorded via a high
quality tabletop microphone. The data consists of 4 ses-
sions of speech, each being 29 seconds in length. 3 sessions
were used for training, and the final session was used for
testing. Each session was recorded using the same micro-
phone and sampled at 16 kHz, but we first filter and down-
sample each of the speech files to 8 kHz before processing.
A total of 20 male speakers was used in this experiment.

The speech for our second set of experiments was ob-
tained from the YOHO voice verification corpus (Campbell
Jr. 1995). This corpus consists of 138 speakers (106 males,
32 females). Each speaker has 4 enrollment sessions of 24
utterances each (total of 96), and 10 verification sessions of
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4 utterances each (total of 40). These are all prompted com-
bination lock phrases, so only digits are spoken. Speech
is recorded via a high quality telephone handset (but not
passed through a telephone channel) and sampled at 8 kHz.

4.2. Feature Extraction

Before features are calculated, the input speech frame,
x(n), is first classified as voiced, unvoiced, or silence.
Only the voiced speech frames are utilised in these ex-
periments, since voiced segments contain the appropriate
harmonic structure that give rise to significant bispectral
values (Wells 1985; B.Boyanov, Hadjitodorov, and Ivanov
1991; Fackrell and McLaughlin 1994). The voicing de-
cision is determined using the algorithm from the LPC-
10E speech coder (Campbell Jr and Tremain 1986). Since
the speech data from each of the speakers have varying
amounts of voiced speech, the amount of data used for
training and testing is not the same for each of the speakers.

Each frame of speech,x(n), consists of 256 samples
with a frame advance (hop) of 80 samples. This equates to
32 ms and 10 ms respectively, hence 100 frames are pro-
cessed every second. For the HOS phase features, the bis-
pectrum is calculated from eachx(n) and the parameters,
P (ai), are determined, whereai = i/D andi = 1 . . .D.
In this work we chooseD = 16, therefore, we obtain a
feature vectorof 16 integrated phase parameters for each
x(n). These phase parameters are not unwrapped such that
−π < P (ai) ≤ π. A total of 12 parameters are calculated
for each MFCC feature vector.

4.3. Speaker Modelling

Each speaker’s collection of feature vectors needs to be
modelled in a manner that will allow us to effectively distin-
guish one speaker from another. We choose a probabilistic
model, specifically a Gaussian mixture model (GMM), to
represent the distribution of these feature vectors. A GMM
is simply a weighted sum ofM Gaussian densities, and in
this work, the densities are multivariate. GMM’s are popu-
lar in speaker recognition systems for two reasons. Firstly,
it is assumed that the individual components are capable of
modelling some underlying set of broad phonetic events,
e.g. vowels, fricatives (Reynolds and Rose 1995). Sec-
ondly, a GMM is capable of smoothly approximating many
arbitrarily shaped densities. An explanation of GMM’s and
procedures for estimation of their mixture weights and den-
sities are given in (Reynolds and Rose 1995). After estimat-
ing the GMM from a particular speaker’s training speech,
he/she is represented by the model,λ = {pi, ~µi, Σi}, where
i = 1 . . .M , andpi, ~µi and Σi are the mixture weight,
mean vector and covariance matrix of theith mixture re-
spectively. In this work, diagonal covariance matrices are
used.

4.4. Speaker Identification

To perform speaker identification, the goal is to find
which, out of a group ofS speaker models, is most likely to
produce the observation sequence,X = {~x1, . . . , ~xT }. X
is simply a sequence ofT feature vectors extracted from the
given speech. Assuming equally likely speakers and noting
that p(X) is the same for all speaker models, we classify

the speaker based on the following:

Ŝ = arg max
1≤k≤S

p(X |λk) (8)

whereλk is the GMM for thekth speaker. Assuming inde-
pendence between observations, this becomes:

Ŝ = arg max
1≤k≤S

T∑

t=1

log p(~xt|λk) (9)

where

p(~xt|λ) =
M∑

i=1

pibi(~xt) (10)

andbi(~xt) is theith component of the multivariate Gaus-
sian mixture density evaluated for the feature vector,~xt,
andpi’s are the priors (mixture weights).

4.5. Performance Evaluation

To evaluate the speaker identification system, the test
speech is divided into overlapping segments of observation
sequences. Each sequence consists ofT = 200 feature vec-
tors, corresponding to 2 second utterances. An observation
advance of 10 ms is used, hence each sequence differs from
the previous sequence by only one feature vector. For ex-
ample, the first two segments would be

Segment 1
︷ ︸︸ ︷

~x1, ~x2, . . . , ~xT ,~xT+1, ~xT+2, . . .

~x1,

Segment 2
︷ ︸︸ ︷

~x2, . . . , ~xT , ~xT+1, ~xT+2, . . .

For each segment, equation 9 is used to determine the
speaker which gives the maximum probability for the ob-
servation sequence. This is repeated for all the possible
segments in the length of the test speech and across all the
speakers in the database. The correct identification rate is
then calculated as

% Correct Identification=

Total # of correctly identified segments
Total # of segments

× 100.
(11)

5. Results and Discussion
5.1. Speaker Identification Using NIST Speech Data

The first set of experiments used the NIST speech data
to evaluate the basic speaker recognition system described
in section 4.. Speaker models were trained using the 16
integrated phase parameters extracted from each voiced
frame of the training speech. The test speech from each
speaker was then stochastically compared with each of
these models. The correct identification rate was computed
using the procedure outlined in sections 4.4. and 4.5.. Using
the HOS phase parameters as features, the 20 male speaker
system achieved a correct identification rate of 98.5%. It
must be noted, however, that this result is biased since the
amount of training and testing speech differs between the
speakers.

From the above result, it is evident that phase based pa-
rameters can be useful for speaker identification. Even if
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the short time Fourier phase spectrum is not directly useful
for the task, parameters can be defined from higher-order
spectra that capture useful information including that from
the phase spectrum. The simple speaker identification ex-
periment above shows that the integrated bispectral phase
parameters hold important information capable of discern-
ing known speakers within a database.

For comparison, a second speaker identification exper-
iment was performed using the same NIST speech data.
This experiment was almost identical to the first, with the
only difference being the choice of feature vectors. A set of
12 MFCC parameters were used instead of the 16 integrated
phase parameters. The MFCC based system achieved a cor-
rect identification rate of 99.4%.

From this result we can see that the HOS phase param-
eters can produce comparable results to the more widely
used MFCC parameters when utilised as features in a sim-
ple speaker identification task. When the test segment used
for identification is increased from 2 seconds to 4 seconds,
the correct identification rate improves to 100% for both
feature sets.

5.2. Speaker Identification Using YOHO Speech Data

Having shown that the HOS phase parameters are an ef-
fective set of features for microphone quality speech from
a small speaker database, our next objective was to extend
these results to larger populations. For these next experi-
ments we use the YOHO speech database. This allows us
to test the HOS phase parameters on a population of up to
138 speakers. There is, however, a major difference be-
tween this YOHO data and the aforementioned NIST data.
The NIST data is comprised of continuous unconstrained
speech, whereas the YOHO data consists solely of dual
digit numbers within combination lock phrases. An ex-
ample of such a phrase is ”twenty–six, eighty–one, fifty–
seven”. In addition, the YOHO database was designed to
be evaluated by classifying each individual test utterance
independently of each other. In order to remain consistent
with the procedure described in section 4.5. however, we
have concatenated all the individual test utterances from a
particular speaker into one single test utterance. We can
then evaluate the performance of our system in the same
way that we have done with the previous experiment.

The correct identification rates for HOS phase parame-
ters for varying lengths of voiced test speech,L, and vary-
ing population sizes,S, are given in figure 2. Each point on
the graph is the average of 20 different tests (except when
S=138), and in each test, the speakers are randomly chosen
from the complete database of 138 speakers. The mean val-
ues and their standard deviations are given in table 1. No
effort has been made to bias the number of male or female
speakers within the different population sizes.

For the case whenS = 20 andL = 2s, we obtained a
correct identification rate of only 91.1% (SD=1.4) for this
YOHO data as opposed to 98.5% for the NIST data. This
may be due to the differing nature of the speech within each
database. Ideally we would have liked to use a large popula-
tion microphone database with unconstrained speech, how-
ever, the YOHO database was the closest we had access to.
It was still useful to study the effects of varying test speech
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Figure 2: Average correct identification rates for the YOHO
database using HOS phase parameters with varying popu-
lation size and varying lengths of voiced test speech. (All
the test utterances from a single speaker are concatenated
into a single utterance). For each population size, 20 tests
were performed using a different set of randomly selected
speakers (except when S=138).

Table 1: Data from figure 2. The standard deviation for
each set of tests is given in brackets below the mean.

Test Population Size
Length 20 40 60 80 100 120 138

1s 81.7 76.8 72.0 68.4 67.0 64.9 63.4
(2.0) (3.4) (2.2) (1.3) (0.9) (0.6)

2s 91.1 88.2 85.2 82.9 82.1 80.7 79.6
(1.9) (2.3) (1.9) (1.2) (0.9) (0.6)

4s 96.2 94.7 92.7 91.7 91.3 90.7 90.0
(1.4) (1.4) (1.7) (1.2) (0.9) (0.7)

5s 97.1 95.8 93.9 93.3 92.8 92.4 91.9
(1.6) (1.4) (1.7) (1.2) (0.9) (0.7)

10s 98.7 97.8 96.3 96.4 95.8 95.7 95.4
(1.6) (1.7) (1.7) (1.1) (0.8) (0.5)

length and increasing population sizes on the correct iden-
tification rates. From the graph in figure 2, we can see that
for smallT , the percent correct identification rate decreases
more rapidly asS increases than for whenT is large. With
L = 10s, the HOS phase parameters maintains an average
percent correct identification rate above 95%.

We should also mention that preliminary tests were per-
formed using the YOHO database as it was intended to be
used, i.e., classifying each individual test utterance sepa-
rately. The results from a single test with varying popula-
tion size are given in table 2. Note that we did not perform
multiple tests for each population size and average the re-
sults like in table 1. Since each test utterance consists only
of 3 double digit numbers, the actual amount of test data
after extracting voiced frames was sometimes as little as
0.5 seconds. We believe that this was a major influence in
the low correct identification rates. It is interesting to note,
however, that the performance increases by 6–10% when
the number of mixtures used in the GMM is increased to
128.
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Table 2: Percent correct identification rates for the YOHO
database using HOS phase parameters with varying popu-
lation sizes. Each utterance is classified independently of
each other, as the database was intended to be used. Re-
sults are given when using both 32 and 128 mixtures for
the GMM’s.

# of # of Mixtures
Speakers 32 128

20 77.0 84.0
40 72.8 82.7
60 69.4 78.4
80 68.3 76.9
100 66.0 75.1
120 65.0 74.6
138 64.3 73.9

5.3. Speaker Identification Using ‘Phase Only’ and
‘Magnitude Only’ Speech Data

HOS integrated phase parameters contain both phase
and magnitude spectral information. In order to establish
that there is indeed a contribution to speaker discrimination
from the phase, we performed additional tests using ‘phase
only’ and ‘magnitude only’ speech data. In these tests, pre-
processing was performed on each frame of speech,x(n),
to discard either magnitude or phase information before the
features were extracted. The steps involved in discarding
magnitude information while preserving phase information
are given in figure 3(a)).

This procedure is identical to that used by Oppenheim
et al. (Oppenheim, Lim, Kopec, and Pohlig 1979) except
that we are processing short time segments of speech as
opposed to long time segments. The steps involved in dis-
carding phase information while preserving magnitude in-
formation are given in figure 3(b)).

The overall correct identification rates using the ‘mag-
nitude only’ and ‘phase only’ speech data for both MFCC
and HOS phase parameter sets are given in table 3. The
results using the original speech are also included for com-
parison.

Since MFCC parameters are derived from the magni-
tude spectrum, the loss of phase spectral information does
not have an effect on its performance. The loss of magni-
tude spectral information, however, causes the MFCC sys-
tem to fail. The correct identification rate for MFCC was
5.65% when using ’phase only’ data. This is approximately
the same as guessing 1 person from a group of 20 speakers.

The correct identification rate for the HOS phase pa-
rameters using ‘magnitude only’ and ‘phase only’ speech
was 16.4 % and 77.3 % respectively. Since the magnitude
information is not neglected completely in their calculation
(they provide a weighting for the integrated phases), the
‘magnitude only’ data performs better than the equivalent
guessing rate of 5 %. The integrated magnitudes tend to
provide aradial spectrum across the different values ofa
in P(a). These magnitudes on their own, however, do not
provide us with sufficient information to discern between
speakers. The integrated phase information, on the other

X(k)  =   X(k)

|X(k)| = 1

Set
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X(k)frame
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x(n)
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Extract 
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x(n)~X(k)
~

(a)
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Speech
x(n)

|X(k)| = |X(k)|
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Features
x(n)~X(k)

~

(b)

Figure 3:Preprocessing required to (a) preserve the phase
spectral information while discarding the magnitude infor-
mation, and (b) preserve the magnitude spectral informa-
tion while discarding the phase information.

hand, can on its own provide a feature set that performs
reasonably well for speaker identification, even when the
power spectrum has been whitened.

It is well known that Fourier phase is more robust to
additive noise than Fourier magnitude. The results in this
section suggest that the HOS phase feature set would be
more robust to such noise.

5.4. Effects of AWGN

Experiments were also performed to compare the ef-
fects of AWGN at varying signal–to–noise ratios (SNR), on
the correct identification rate for each feature set. The re-
sults of these tests are illustrated in figure 4. In each of these
tests, the speaker models remained trained on clean speech,
however, WGN was added to each of the test speech utter-
ances. We therefore have mismatched training and testing
conditions, which is more typical of real operating condi-
tions. No other changes were made to the original setup
described in section 4.. Even though techniques exist, such
as cepstral mean subtraction (Atal 1974) and RASTA (Her-
mansky and Morgan 1994) processing, to make MFCC’s
more robust to channel mismatch, we wished to keep both
systems identical apart from the feature set. It should also
be noted that less testing speech is available in the pres-
ence of AWGN, especially at low SNR’s. This is because
the system only utilises the voiced speech frames of each
speaker.

As the SNR is decreased from 30dB to 5dB, the cor-

Proceedings of the 10th Australian International Conference on Speech Science & Technology

Macquarie University, Sydney, December 8 to 10, 2004. Copyright, Australian Speech Science & Technology Association Inc.

Accepted after full paper review

PAGE 257



Table 3:Correct identification rates using ‘magnitude only’
and ‘phase only’ speech data.

MFCC HOS Phase
Input Feature Set Feature Set

Original
speech 99.4 98.5

Magnitude
only 99.2 16.4
Phase
only 5.65 77.3
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Figure 4: % Correct identification rate versus SNR (for
AWGN) when using the MFCC and HOS phase feature sets.
The system operates under mismatched conditions.

rect identification rates using MFCC parameters decreases
almost linearly from 96% down to 27.7%. The correct iden-
tification rates using HOS phase parameters remains around
99% for SNR’s above 10dB. At 5dB the accuracy drops to
a, still reasonable, 88.8%. The HOS phase features are,
therefore, more robust to AWGN than the MFCC feature
set. On the other hand, the MFCC’s may provide a much
more robust feature set in the presence of a varying channel
with a non-linear phase response.

6. Conclusion
We have shown that the HOS phase based parameters

derived in (Chandran and Elgar 1993), contain useful in-
formation for discerning speakers. On clean microphone
speech and under identical conditions, they perform on a
similar level as the widely used MFCC parameters. Fur-
ther, they are more robust to additive Gaussian noise. A
fused classification system combining the two type of fea-
tures may provide improved accuracy.
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