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Abstract

This paper investigates the application of Max-
imum Entropy Markov Models to semantic role
labelling. Syntactic chunks are labelled according
to the semantic role they fill for sentence verb pred-
icates. The model is trained on the subset of Prop-
bank data provided for the Conference on Compu-
tational Natural Language Learning 2004. Good
precision is achieved, which is of key importance
for information extraction from large corpora con-
taining redundant data, and for generalising systems
beyond task specific, hand coded template meth-
ods.

1 Introduction

In recent years, much progress has been made in
the fields of information extraction and question
answering. Research systems developed for confer-
ence competitions have graduated into the commer-
cial world in such applications as air travel infor-
mation and booking, call handling, and banking.
Although these systems perform well on their cho-
sen tasks, they are generally based on a frame–
and–slot approach. This approach uses application–
dependent frames defined for propositions and then
attempts to fill slots from words surrounding the
proposition that triggered the frame. For exam-
ple, in a financial system we may be interested in
extracting company mergers from newswires. We
could define a frame for the verb stemmerge, and
slots in that frame for the companies involved in
the merger. Although this could be effective for
the chosen domain, each time we want to develop
a system for a new domain we need to start from
scratch. In order to build broad coverage systems
capable of generalising, we need a way of defining
and labelling propositions and their arguments that
is not tied to a particular application.

Systems have been developed to address the task
of semantic role labelling (SRL) using a variety of
machine learning techniques and features ranging
from simple lexical information to those derived
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<!DOCTYPE frameset SYSTEM "frameset.dtd">
<frameset>
<predicate lemma="begin">
<roleset id="begin.01" name="start" vncls="55.1">
<roles>
  <role descr="Agent" n="0">
    <vnrole vncls="55.1" vntheta="Agent"/></role>
  <role descr="Theme(-Creation)" n="1">
    <vnrole vncls="55.1" vntheta="Theme"/></role>
  <role descr="Instrument" n="2"/>
</roles>

Figure 1: Propbank XML frame forbegin

from parse trees. These semantic roles identify
arguments of verb predicates and can be general,
such asagent, theme, or verb specific, such asA0,
A1.

This paper presents a discriminative Markov
model for the semantic role labelling task proposed
for the Conference on Computational Natural Lan-
guage Learning 2004 (CoNLL). Firstly, recent work
on SRL is examined and the data available for
this task is presented. A discriminative maximum
entropy framework is defined and a SRL model
described. This model trains maximum entropy
classifiers for each state in the Markov model, rep-
resenting the probability distribution for transitions
from that state for a given observation feature vec-
tor. This approach combines the advantages of tran-
sition sequence based models with the ability of
maximum entropy classifiers to handle a diverse
range of overlapping features. The results obtained
achieve precision comparable to the best performing
support vector model, while requiring significantly
less time to train. However, recall is not as high as
other approaches and provides an area for further
improvement.

2 Background

Many researchers have tackled semantic role
labelling. Traditional parsing systems have per-
formed tasks that incorporate a level of semantic
labelling and many information extraction systems
attempt to solve the labelling problem for a single,
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BUY SELL

A0 buyer

A2 seller

A1 thing bought

A3 price paid

A4 benefactive

A0 seller

A2 buyer

A1 thing sold

A3 price paid

A4 benefactive

Figure 2: Propbank frames for two related predi-
cates

or small group of propositions, e.g. the biomedical
domain. Recently, the development of semantically
labelled corpora has led to a number of statistical
systems being developed.

Following the pattern of other areas of NLP, it
was not until the development of projects to sys-
tematically label propositions and their arguments
in a corpus, that researchers began to attack the
problem of developing generalised statistical sys-
tems for SRL. FrameNet was one of the first such
projects and aimed to create a hierarchy of seman-
tic frames describing predicates and the roles they
accept. Sentences from the British National Cor-
pus (BNC) where annotated with roles derived from
these frames.

Gildea and Jurafsky (2002) used FrameNet to
train networks of statistical classifiers based on a
variety of lexical and syntactic features. They used
the statistical parser of Collins (1997) to create the
parse trees upon which their syntactic features were
based. As the BNC doesn’t contain gold stan-
dard parse trees, they were unable to quantify the
affect of an imperfect parse on the classifiers. How-
ever, this work served to highlight the two distinct
tasks in SRL: segmenting argument constituents and
identifying their semantic role. On the full task
of segmenting and labelling arguments, Gildea and
Jurafsky achieved a performance of 65% recall and
61% precision, but it must be noted that their sys-
tem assumes knowledge of the proposition argu-
ments being labelled. Fleischman et al. (2003)
applied maximum entropy techniques to the prob-
lem defined by Gildea and Jurafsky and achieved
a slight increase in performance. This work cast
the labelling task as one of tagging, using a maxi-
mum entropy formulation over eleven feature sets,
and the Viterbi algorithm to search for the best
tag sequence. Thompson et al. (2003) applied
a generative model to labelling semantic roles in
FrameNet data which was somewhat similar to a
hidden Markov model (HMM) approach. Their
model calculated the probability that for a particular
frame a role sequence would generate an observed

constituent sequence and assumed that roles corre-
spond to sentence constituents. On their described
task they record approximately 70% accuracy, but it
is not clear how their system could be applied to the
case of general SRL given a raw sentence with no
additional information.

The Proposition Bank is a project to add propo-
sitional annotations to the Penn Treebank corpus
(Kingsbury et al., 2002). In comparison to Frame-
Bank, Propbank labels roles with a generic set of
tags: A0, A1, A2 etc. Frame entries map these
generic labels to proposition specific semantic roles,
such as theme and agent (figure 1). Although the
semantic roles are not strictly comparable across
propositions, annotators were instructed to be con-
sistent in naming and numbering semantic related
verb roles (figure 2). The more statistically repre-
sentative approach and increased coverage, as well
as the availability of the treebank parse trees, has
made Propbank the most popular resource for cur-
rent SRL research. Pradhan et al. (2003) devel-
oped a support vector machine that chunked seman-
tic arguments from sentences in the Propbank cor-
pus. Their system used similar features as previous
systems, including parse trees, and explored using
both word-by-word and chunk-by-chunk instances
for the classifier. Of interest in this work is an inves-
tigation into the effect of not using features derived
from a parse tree and relying only on shallow syn-
tactic information, they found that this reduced per-
formance by around 20%.

In an attempt to motivate the development of SRL
systems that have direct application to current prob-
lems in information extraction and question answer-
ing, CoNLL made SRL the topic of their 2004
shared task (Carreras and Marquez, 2004). The
challenge was to come up with “machine learning
strategies which address the SRL problem on the
basis of only partial syntactic information, avoiding
the use of full parsers and external lexico-semantic
knowledge bases,” thus recognising the importance
of SRL techniques that are fast and domain inde-
pendent. The data provided for the conference
was based on Propbank and didn’t contain parse
trees. Of the systems developed for CoNLL, two
used maximum entropy techniques. Both these sys-
tems used a single instance–by–instance maximum
entropy classifier. Lim et al. (2004) achieved the
highest performance of the two with an F score of
64.76 on the test data. In this paper we aim to
improve precision over previous maximum entropy
techniques by optimising the whole sentence tag
sequence and thus reducing sequence errors such
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as repeated arguments and unlikely argument order-
ings.

3 Data & Evaluation
The CoNLL shared task supplied training, develop-
ment and testing data created from Propbank anno-
tations on six sections of the Wall Street Journal
component of the Penn Treebank. The standard
semantic labels from Propbank were used:

Verb specific argumentsArguments with a spe-
cific semantic meaning for a verb are labelled
A0-A5. The semantics of the roles correspond-
ing to these numbered arguments are defined in
the Propbank frame for the predicate verb, but
in generalA0 maps to agent andA1 to patient
or theme.

Adjunctive arguments General arguments that
any verb may take. These includeAM-LOC,
for locative andAM-TMP, for temporal. For
the complete list see (Carreras and Marquez,
2004).

Argument references Predicate arguments that
reference other predicate arguments. Labelled
R-A?with the argument referenced as the suf-
fix, eg. R-A1 is a reference to theA1 defined
elsewhere.

Predicate verbThe predicate verb that defines the
proposition being labelled is taggedV.

The data contained annotations of part-of-speech
(PoS), base-phrase chunks, clause embedding and
named entities. An example of the data is shown in
figure 3. For each of the target verbs a column is
provided with the argument labelling for that verb.

PoS and base–phrase chunks are annotated in
IOB2(inside, outside, begin) format (Ramshaw and
Marcus, 1994) and don’t allow embedding. Clauses
and arguments are annotated in begin, end format,
with clauses allowing overlapping and arguments
not. So(A0* represents the start of theA0argument
and*A0) represents the end, while(A0*A0) labels
an argument spanning a single word.

CoNLL also developed the evaluation scriptsrl-
eval.plthat ranks systems on the standard criteria of
precision, recall and F1 score.

4 Maximum Entropy Markov Models
The system described in this paper is based on a dis-
criminative Markov model, allowing both the opti-
misation of the tag sequence and the incorporation
of multiple features over observations. A limita-
tion of HMMs is that it is hard to extend them to

allow multiple features of observations, rather than
atomic observations themselves. An alternative to
the HMM was proposed by McCallum et al. (2000)
in which the transition and observation probability
matrices are replaced by maximum entropy classi-
fiers for each state. These classifiers encode the
probability distributionPs′(s|o), the probability of
making the transition tos from s′ and observingo.

4.1 Conditional Exponential Transition Model

The maximum entropy framework, as presented by
Berger et al. (1996), aims to “model all that is
known and assume nothing about that which is
unknown.” This is achieved by choosing the model
that fits all the constraints expressed by the training
data and is the most uniform, i.e. the one with the
highest entropy.

Many classification tasks are most naturally han-
dled by representing the instance to be classified as
a vector of features. By combining the state and
observation transition functions into a single max-
imum entropy model for each state we can condi-
tion the tag sequence assigned to a sentence on such
things as part–of–speech tags, phrasal tags, predi-
cate verbs, etc.

For this work we represent features as binary
functions of two arguments,fi(o, s), wereo is the
observation ands is the possible next state. In
order to encode properties of instances which are
not binary, such as part–of–speech, a binary feature
function is defined for each possible value of the
property, i.e.f0(o, s) is trueiff o contains the tagNN
and a transition tos is observed,f1(o, s) is trueiff o
contains the tagVBand a transition tos is observed,
and so on.

Given our set of feature functions, and a set of
labelled training instances, we can formulate the
following constraint equation:

expected[fi] = empirical[fi] (1)

i.e. we should aim to have the expected value for the
feature functioni in the predicted distribution equal
to its average on the empirical training sequence.
The maximum entropy distribution is a conditional
exponential model of the form:

Ps′(s|o) =
1

Z(o, s′)
exp(

∑
i

λifi(o, s)) (2)

whereλi are the feature weights that need to be
estimated from the training data, andZ(o, s′) is a
normalisation factor to ensureP is a probability
distribution.
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That             DT    B-NP     (S*         -               (A0*               *       
settlement       NN    I-NP       *         -                  *A0)            *       
represented      VBD   B-VP       *         represent        (V*V)             *       
the              DT    B-NP       *         -               (A1*               *       
first            JJ    I-NP       *         -                  *               *       
time             NN    I-NP       *         -                  *               *       
shareholders     NNS   B-NP     (S*         -                  *            (A2*A2)    
were             VBD   B-VP       *         -                  *               *       
granted          VBN   I-VP       *         grant              *             (V*V)     
a                DT    B-NP       *         -                  *            (A1*       
major            JJ    I-NP       *         -                  *               *       
payment          NN    I-NP       *         -                  *               *A1)    
in               IN    B-PP       *         -                  *        (AM-LOC*       
a                DT    B-NP       *         -                  *               *       
greenmail        NN    I-NP       *         -                  *               *       
case             NN    I-NP       *S)       -                  *A1)            *AM-LOC)
.                .     O          *S)       -                  *               *       

Figure 3: CoNLL data format

s' s

o

s' s

o

HMM MEMM

Figure 4: In a MEMM states are conditioned on the
previous state and the observation.

4.2 Training and Evaluating the Model

In order to train the MEMM we first need to split the
global training data into subsets which will be used
to train each individual maximum entropy model.
The list of training instances for each state repre-
sents the transitions and observations made from
that state in the training data. Once all the training
data has been processed into sub training lists, the
Generalized Iterative Scaling (GIS) (Darroch and
Ratcliff, 1972) algorithm is used to train each max-
imum entropy classifier.

A requirement of natural language systems, espe-
cially those based on tagging sentences, is that the
sequence of classifications produced by a model
should be coherent, this is what the HMM approach
and the Viterbi dynamic programming algorithm
facilitate. The recursive Viterbi step for the MEMM
is defined as:

δt(s) = max
0≤s≤N

[δt−1(s′) × Ps′(s|ot)] (3)

whereδt(s) is the probability of seeing the obser-
vation sequence up until timet and being in state
s, having followed the most probable sequence of
state transitions intos. Figure 4 illustrates that both
the previous state and the observation determine the
next state probability distribution.

4.3 Limitations

The MEMM approach has limitations that must be
kept in mind for any implementation. By splitting
the training data on the basis of state transitions
we are removing the ability of the model to make
global generalisations over particular semantic role
properties. For example, the properties that mark
the start of a particular role will be dispersed among
all the states that transition into that role. Therefore
the fact that a role is often realised as a preposi-
tional phrase with its first wordon will be diluted
in the split training data. As an added problem,
some roles will only appear very rarely in the train-
ing data and thus their state transition functions will
need to be estimated from a very small amount of
data, without the ability to represent general role
properties represented in the global data. In order
to partially address the problem of data sparseness,
a gaussian prior is used to smooth the individual
transition functions which have less than 10,0001

supporting training examples.
Lafferty et al. (2001) identified the label bias

problem as a potential concern for MEMMs. If a
particular state has a low–entropy next state distri-
bution, with the extreme case being a single next
state, then the observation that the transition is con-
ditioned on will effectively be ignored. Thus the
Viterbi path will be biased towards state transitions
with low entropy that may be supported by very
little training data, over other transitions which are
much more supported in the training data. As the
MEMM developed in this paper was trained assum-
ing a fully connected initial structure, the transition
functions were unlikely to contain a single next state
with a nonzero probability. Thus, it was assumed
that the label bias problem had little effect, but this
could be verified experimentally in further work.

1Determined experimentally. A discussion of smoothing
maximum entropy models can be found in (Chen and Rosen-
feld, 1999).
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5 A MEMM for SRL

Section 3 described the framing of SRL as a tagging
task. As MEMMs allow the determination of an
optimum tagging sequence for a sentence, and allow
the modelling of the data as multiple features, it is
of interest to investigate their performance on the
CoNLL SRL labelling task.

The MEMM described in this paper is a phrase-
by-phrase model that maps argument labels to
states, and feature vectors over phrases to observa-
tions. The original data format displayed in figure
3 was mapped into a phrase based format as shown
in figure 5 by converting role boundaries to IOB2
representation (Ramshaw and Marcus, 1994) and
collapsing each phrase into a single instance repre-
sented by its head word.

Tagging phrase–by–phrase leads to the loss of
some information as it is no longer possible to rep-
resent roles that have sub-phrasal boundaries. How-
ever, as such roles are rare, or easy to handle with
post-processing, the loss is acceptable. The advan-
tage of this representation is that it compresses the
data and thus decreases the processing required by
the model.

A further verb specific compression is performed
on the data clauses. It was observed that phrases
in clauses below the target verb clause participate
completely in roles, therefore these clauses were
collapsed with only the first phrase retained for lex-
ical and syntactic information, as shown in figures 6
and 7.

The following features were calculated for each
of the phrase/clause instances presented to the
model as an observation vector:

Syntactic featuresPhrase type, head word, head
PoS were used. Also, for context, the two
preceding and following phrase types and head
PoS.

Clause deltaThe difference of the clause depth of
the instance phrase and the clause containing
the target verb. If the phrase is lower in the
clause tree than the target verb, this value is
negative.

Predicate clauseA boolean feature that istrue if
the instance clause depth is equal to the target
verb phrase depth,falseotherwise.

Position relative to the verbA feature to indicate
whether the phrase instance is before, in, or
after the target verb phrase.

Target verb stem The stemmed target verb, as
supplied in the CoNLL input data.

Predicate verb suffix Regular expression suffix
matching is performed on the target verb. Suf-
fixes matched are:ing, ogy, ed, s, ly, ion and
ies.

Most occured frame The frame of a verb is
defined as the role sequence that it appears
with in a sentence, excluding adjunctive roles,
for example:(A0, V, A1, A2). A frequency dis-
tribution of frames that a target verb appears
in is created from the training data, and the
most frequent frame for a particular target verb
presented as a feature. This aims to represent a
verbs preferred sentential structure.

Number of NPs from the target verb A count of
the number of NP chunks between the instance
phrase and the target verb phrase. If the
instance is after the verb, this is a negative
count.

Number of base-phrases to the target verbA
count of the number of base-phrase chunks
between the instance phrase and the target verb
phrase. If the instance is after the verb, this
value is negative.

Target verb voice A heuristic is used to estimate
the voice of the verb as eitheractiveor passive.
If the verb phrase contains a form of “to be”
and the verb is not gerundive, it is labelled
passive, otherwise it’s labelledactive.

Prepositional head All noun phrases following
a prepositional phrase used a feature encod-
ing the prepositional phrase’s head word. This
improved the handling of adjunctive arguments
realised as prepositional phrases.

ClauseAs described previously, clauses below the
verb are compressed to a single instance. If this
instance phrase is a compressed clause, this
feature istrue.

Feature pairs The following features were paired
to provide an indication of dependency:verb
stem + head, verb voice + position, verb stem
+ phrase typeandverb stem + phrase path.

6 Implementation

The model was implemented in the Python script-
ing language using the Natural Language Toolkit
(NLTK) (Bird and Loper, 2004). The system was
implemented as a pipeline of processes:

1. First the training data was tokenized and global
statistics calculated, such as verb frames etc.

Proceedings of the Australasian Language Technology Workshop 2004

Macquarie University, Sydney, December 8th, 2004. Copyright,  Australian Speech Science & Technology Association Inc.

Accepted after full paper review

PAGE 113



!￼✓￼⌃%↵ ⌘￼✓

!

settlement       NN    NP         -                 B-A0           O       
represented      VBD   VP         represent         B-V            O       
time             NN    NP         -                 B-A1           O       
shareholders     NNS   NP         -                 I-A1           B-A2    
granted          VBN   VP         grant             I-A1           B-V     
payment          NN    NP         -                 I-A1           B-A1    
in               IN    PP         -                 I-A1           B-AM-LOC       
case             NN    NP         -                 I-A1           I-AM-LOC
.                .     O          -                 O              O       

Figure 5: Phrase-by-phrase compressed data format

!￼✓￼⌃%↵ ⌘￼✓

!

settlement       NN    NP         -                 B-A0
represented      VBD   VP         represent         B-V
time             NN    NP         -                 B-A1
shareholders     NNS   NP         -                 I-A1   (a compressed clause)
.                .     O          -                 O       

Figure 6: Data representation with a clause compressed for the verbrepresent

2. The data was then separated into phrase/clause
chunks and the features determined. It was
then in the form of training instances, an
instance corresponding to a sentence and target
verb pair, that could be used as training data.

3. Individual state transition function training
lists were then created as described in section
4.2

4. The GIS algorithm with a Gaussian prior was
then used to train each state transition function

Testing instances were labelled by the model using
the Viterbi algorithm described in section 4.2 to
determine the optimal tagging. A post process-
ing step was used to tagAM-MOD and AM-NEG
adjuncts as these occur at a lexical level and thus
can’t be correctly classified by a phrase-by-phrase
system. All words in the target verb phrase that
had PoS tagsMD (modal auxiliary) were tagged as
AM-MOD, while occurrences of the wordsn’t or not
were tagged asAM-NEG.

Table 1 shows the output of thesrl-eval.plscript
when the model was used to tag the test data. The
overallF1 score achieved by the system was 59.09.
This score corresponds to 24% of the sentences
being perfectly labelled.

Due to the large amount of time required to tag
the development and test sets using a full set of
role tags, the tagging was performed with a reduced
set of tags. The tags used were:A0, A1, A2,
A3, A4, A5, R-A0, R-A1, R-A2, C-A1, AM-TMP,
R-AM-TMP, AM-ADV, AM-LOC, AM-MNR, AM-
MOD, AM-DIR, AM-NEG, AM-DIS, AM-CAU, AM-
EXT, AM-PNC, andV. This accounts for some of
the reduced performance on the test set as the the
reduced tag set was chosen on the basis of the devel-
opment data, and thus had less coverage on the test
data.

7 Discussion

The motivation for using a MEMM approach was to
produce more coherent output by finding the opti-
mal Markov sequence, and this is borne out in the
results. As is to be expected when not using a parse,
prepositional phrase attachment and other syntactic
ambiguity, such as propositions late in long sen-
tences, contribute to a number of errors.

Figure 8 shows two sentences that were cor-
rectly tagged by the system, and three that contained
errors. We can see from the correct sentence that the
model is capable of recognising some of the more
complex roles such asdiscourse (DIS)and pur-
pose (PNC). In the third sentence it is apparent that
the system has not recognisedJanuaryas temporal,
instead labelling the preposition aslocative (LOC).
This is a common error,LOC andTMP arguments
are both frequent and occur in similar prepositional
syntax and the model has not been able to capture
the lexical distinctions between the two. Sentences
four and five show that the system struggles with
the semantic ambiguity of theLOC role. In four,
the gold standard identifies‘in the Reagan adminis-
tration’ as the location where the defense secretary
served, whereas the model tags the preposition as
part of the theme ofserved, a tagging which seems
quite reasonable. The opposite occurs in sentence
five where the model has tagged‘in real estate’as
a location. In this case the gold standard is more
semantically consistent. Overall these errors sup-
port the argument that even when the model errs,
the output is still often consistent.

The CoNLL data requires the labelling of pred-
icate verbs that occur within noun phrases. The
model developed generally fails to handle these
predicates correctly. This is to be expected as these
predicates have a completely different structure and
behavior to the standard verb phrase predicates and
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Mr. Johnson succeeds Harry W. Sherman, 

who resigned to pursue other interests

,in both positions.

Figure 7: A clause tree showing a clause that would be collapsed to a single instance

1. [ Of course]DIS , [Mr. Wolf, 48 years old,]A0

[has]V [some savings]A1.

2. Mr Johnsom succeeds[Harry W. Sherman]A0,
[who]R−A0 [resigned]V [to pursue other
interests]PNC , in both positions.

3. ([In January]LOC)TMP , [he]A0 [accepted]V
[the position ...]A1.

4. [Mr. Carlucci, 59 years old,]A0 [served]V
as [defense secretary(in the Reagan
administration)LOC ]A1.

5. [Balcor]A0, [which]R−A0 [has]V
([interests]A1[in real estate]LOC)A1, said
the position is newly created.

Figure 8: Example model output. Square brackets
indicate tags applied by the system, while round
brackets and indicate the tagging from the gold stan-
dard

are also in the minority in the training data. A sepa-
rately trained model could solve this problem.

There are a number of possible improvements to
the MEMM model. Prepositional phrase attachment
could be handled explicitly in a subsystem. Each
state transition function could induce then most
informative features and discard the rest, enabling
the model to be more able to avoid over–training
problems. Another obvious path to explore would
be the application of conditional random fields (Laf-
ferty et al., 2001) to the SRL task. These models
have the advantage of solving the label bias prob-
lem, as well as allowing more flexibility in mod-
elling, and by using an MEMM for initial weights
they converge more quickly.

The advantage of the approach described lies in
the increase in precision and the improved coher-
ence of the sentence tag sequence. However, the
nature of the SRL task as one that requires both local
phrase level feature information and global sentence
information, would indicate that both need to be

Precision Recall Fβ=1

Overall 71.29% 50.45% 59.09
A0 84.02% 66.11% 74.00
A1 65.94% 51.81% 58.03
A2 58.96% 42.92% 49.68
A3 65.15% 28.86% 40.00
A4 70.00% 42.00% 52.50
A5 0.00% 0.00% 0.00
AM-ADV 46.75% 11.76% 18.80
AM-CAU 66.67% 4.08% 7.69
AM-DIR 45.16% 28.00% 34.57
AM-DIS 66.99% 32.39% 43.67
AM-EXT 70.00% 50.00% 58.33
AM-LOC 37.41% 22.81% 28.34
AM-MNR 47.96% 18.43% 26.63
AM-MOD 87.57% 92.26% 89.86
AM-NEG 82.96% 88.19% 85.50
AM-PNC 35.29% 7.06% 11.76
AM-PRD 0.00% 0.00% 0.00
AM-TMP 61.23% 26.64% 37.13
R-A0 90.65% 61.01% 72.93
R-A1 73.91% 48.57% 58.62
R-A2 75.00% 33.33% 46.15
R-A3 0.00% 0.00% 0.00
R-AM-LOC 0.00% 0.00% 0.00
R-AM-MNR 0.00% 0.00% 0.00
R-AM-PNC 0.00% 0.00% 0.00
R-AM-TMP 100.00% 7.14% 13.33
V 96.63% 95.69% 96.16

Table 1: Model performance on the test set

modelled for maximal performance. Most current
approaches, including the approach presented in this
paper, use word or phrase level classifiers and then
try to capture sentence level information through
features such as phrase paths and counts.

The evaluation metrics chosen for the CoNLL
shared task appear to be brittle, giving no recogni-
tion to systems that come close to predicting argu-
ments but fail to find exact matches. The main moti-
vation for SRL techniques is to improve information
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extraction systems, but it is possible that systems
that are able to accurately label the head–words that
fill roles of predicate verbs, but miss prepositions
and additional noun-phrases, would be very useful
also. This is less of a concern for systems employ-
ing parse trees as phrase attachment information is
known.

8 Conclusion
A maximum entropy Markov model was developed
for the SRL task defined at CoNLL 2004. The
model managed good performance on the test data,
achieving a precision of 71.29 and anF1 score
of 59.09. This result suggests that discriminative
sequence models are worth further investigation for
the semantic role labelling task. Many errors in tag-
ging made by the model can be attributed to lack of
information about the syntactic relationships among
phrase chunks, providing an argument for the use of
full parse trees when labelling semantic roles.
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