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ABSTRACT

Nonwords are often used to clarify how lexical pro-
cessing takes place in the absence of semantics. This
study shows that nonwords are not semantically vac-
uous. We used Linear Discriminative Learning [2]
to estimate the meanings of nonwords in the MALD
database [14] from the speech signal. We show that
measures gauging nonword semantics significantly
improve model fit for both acoustic durations and
RTs. Although nonwords do not evoke meanings
that afford conscious reflexion, they do make con-
tact with the semantic space, and the angles and dis-
tances of nonwords with respect to actual words co-
determine articulation and lexicality decisions.

Keywords: Nonword, auditory lexical decision,
lexical processing, Linear Discriminative Learning.

1. INTRODUCTION

Nonwords are widely used in a variety of linguis-
tic experiments. In lexical decision tasks, for exam-
ple, they are used not only to balance word decisions
with nonword decisions, but also to help conceal the
experimental manipulation of word materials.

When nonwords are themselves the target of
study, the obvious absence of clear meanings for
nonwords has led researchers to use nonwords to
study lexical processing without any interference of
semantics. For example, Vitevitch and Luce [15]
contrasted nonwords with words to distinguish the
loci where different effects occur. Examining the
effects of phonological neighborhood density and
phonotactic probability on spoken word recognition
with a shadowing task, they found effects with oppo-
site sign for words and nonwords. Whereas higher
diphone probability and denser similarity neighbor-
hoods predicted longer reaction times for words,
they predicted shorter reaction times for nonwords.

Vitevitch and Luce argued that the effects of
phonological neighborhood density and phonotac-
tic probability arise at different processing levels.

The effect of neighborhood density was interpreted
as reflecting lexical competition, the hallmark of
word processing. The effect of phonotactic probabil-
ity, which in their data was strongly correlated with
neighborhood density, was understood as arising at
the sublexical level. Nonword processing would
then be driven primarily by phonotactic probability.

In a subsequent study, Vitevitch and Luce [16] re-
ported that in lexical decision, nonword processing
can also involve the lexical level, if nonwords co-
activate real words that then enter into a process of
lexical competition. However, by assumption, non-
words still do not have their own specific semantics.

In this study we show that nonwords are not se-
mantically empty and that nonword-specific mean-
ings do co-determine lexical processing. This idea is
in fact not new. Take sound symbolism, for example.
If nonwords would not activate any semantics, it is
hard to explain the well-established finding that cer-
tain nonwords are consistently associated with spe-
cific semantic concepts: a nonword such as baluma
is typically associated with objects with round curvy
shapes ([9, 13]).

The goal of the present study is to complement
investigations of phonological aspects of nonword
processing with an exploration of their semantic
effects. To that end, we extracted the nonword
data from the Massive Auditory Lexical Decision
(MALD) database [14], and examined acoustic du-
rations and reaction times. Specifically, we gener-
ated semantic vectors for nonwords, using the algo-
rithms of a new cognitively and linguistically moti-
vated theory of the mental lexicon, Linear Discrimi-
native Learning [2].

2. METHOD

2.1. Materials

We obtained the recordings and reaction time data
of the nonwords from MALD. The nonwords, all
composed of phonotactically legal syllables, were
recorded by one male native speaker of English and



were responded to by 231 native listeners in a lexi-
cal decision task. In what follows, we analyzed only
correct responses. This left us with 9,573 data points
for the acoustic durations, and 96,049 for the RTs.

2.2. Estimating nonword meaning

Following Landauer and Dumais [11] and subse-
quent work in distributional semantics, we approx-
imated word meanings by means of vectors of
real-valued numbers, henceforth semantic vectors.
We made use of the semantic vectors described in
Baayen et al. [2], which were derived from the
TASA corpus [8, 12]. The computational model
of Linear Discriminative Learning (henceforth LDL)
developed in this study maps a numeric vector rep-
resenting a word’s form onto a numeric vector rep-
resenting a word’s meaning.

Formally, let CCCwww denote the matrix specifying
words’ forms, and let SSSwww denote the matrix speci-
fying words’ meanings. The form and meaning ma-
trices have the same number of rows, one for each
word. Thus, in CCCwww, a given row vector cccw represents
the form features of one specific word, whereas in
SSSwww, the corresponding row represents the semantic
vector (ssswww) of that word. We define a matrix FFF that
maps the form vectors in CCCwww as precisely as possible
onto the semantic vectors of SSSwww. Using the notation
of linear algebra, this mapping can be written as:

(1) CCCwwwFFF = SSSwww.

The mapping FFF is equivalent to a two-layer network
without hidden layers. Given the matrices CCCwww and
FFF , equation (1) can be solved (see [2] for mathe-
matical details). Given the mapping FFF and a set of
nonwords, the form vectors of which are brought to-
gether as the row vectors of a matrix CCCnw, we can
estimate the semantic vectors of these nonwords by
post-multiplying the matrix of form vectors with FFF :

(2) CCCnwFFF = ŜSSnw.

Form and meaning vectors were constructed for the
19,412 words from MALD for which TASA-based
semantic vectors were also available to us (cf. [2]).
The semantic vectors constructed in this study were
used to build the semantic matrix SSSwww. The form ma-
trix CCCwww was derived from the speech signal using the
Frequency Band Summary (FBS) features [1]. For
the present dataset, there was a total of 26,336 dis-
tinct FBS features. A word’s form vector specifies
which of these FBS features are present in that word,
using binary coding with 1 for presence and 0 for
absence. For the 9,573 nonwords in MALD, we cre-
ated a second form matrix (CCCnw), following the same

procedure as for the word matrix CCCw. Using (2), we
then derived the semantic matrix for nonwords ŜSSnw,
each row of which represents the predicted semantic
vector (ŝssnw) of a nonword.

2.3. Predictors

For the analysis we considered five variables as pre-
dictors. The first two are measures of phonological
form, whereas the latter three are semantic measures
derived from ŜSSnw.
Phonological Neighborhood Density (PhonND):
The number of words which have an edit distance
of one phone (by addition, deletion, or substitution)
from the nonword. This measure is provided by
MALD.
Biphone Phonotactic Probability (BiphProb):
The mean biphone phonotactic probability of a non-
word. This measure was obtained from the on-
line phonotactic probability calculator developed by
Vitevitch and Luce [17].
Euclidean Distance from Nearest Neighbor
(EDNN): The Euclidean distance of the position of a
nonword in the semantic space from the position of
its nearest word neighbor. This was calculated by
using the FNN package of R [3].
Average Lexical Correlation (ALC): The mean of
the correlations of a nonword’s semantic vector ŝssnw
with each of the words’ semantic vectors sssw. Cor-
relation, similar to consine similarity, is a measure
of the angle of two vectors. The smaller the angle
is, the more similar the two vectors are, and hence
the higher the correlation. Higher ALC indicates
that the nonword has “landed” in a denser semantic
neighborhood.
Nearest Neighbor Correlation (NNC): The maxi-
mum correlation between a nonword semantic vec-
tor ŝssnw and a word semantic vector sssw, taking into
account all word vectors. Its value is high when the
angle between ŝssnw and sssw is small, suggesting the
nonword is semantically similar to a word.

3. RESULTS

3.1. Nonword duration

Statistical analyses were conducted using the Gener-
alized Additive Mixed Model (GAMM) [18], which
allows the modeling of nonlinear functional rela-
tions between one or more predictors and the re-
sponse variable. To avoid problems of interpreta-
tion due to multicollinearity (the pairwise correla-
tions of these measures are: EDNN-ALC: r = −0.28;
EDNN-NNC: r =−0.45; ALC-NNC: r = 0.57), we per-
formed a Principal Component Analysis (PCA) on



the three semantic measures. The PCA loadings for
these measures are presented in Table 1. We in-
cluded PC1 and PC2, which together accounted for
87% of the variance in the semantic measures, into
our regression analyses.

We fitted a GAMM to the nonword durations,
with as predictors PC1 and PC2, as well as from
the two phonological measures of PhonND and
BiphProb. The upper panels of Figure 1 visualize
the partial effects of the two phonological factors.
Both are well-supported predictors for nonword du-
ration, but their effects are opposite. Accordingly,
nonwords in a denser phonological neighborhood
are produced with shorter duration, while nonwords
with higher phonotactic probability have longer du-
ration. This pattern of results fits well with previous
work on PhonND effects on duration. Gahl et al. [7],
based on a different model, the two-step interactive
activation model of lexical access of Dell [5] and
Dell and Gordon [6], hypothesized that increasing
PhonND should be associated with shorter word du-
rations. That prediction was confirmed based on a
corpus of spontaneous speech.

The semantic measures, the partial effects of
which are presented in the bottom panels of Fig-
ure 1, are also predictive. Inclusion of these pre-
dictors increased model fit substantially (∆ AIC =
1845 units). For both PCs, we found upward-sloping
trends. Since PC1 is a dimension that contrasts EDNN
on the one hand with ALC and NNC on the other
hand, if PC1 is large, a nonword is distant from other
words, has landed in a sparse neighborhood, and is
semantically dissimilar to any word. Under this con-
dition, durations increase. PC2 is an orthogonalized
dimension that aligns EDNN and ALC. A large value of
PC2 indicates that the nonword is again distant from
other words, but now it is in a dense region of se-
mantic space. In this case durations increase as well.
PC1 may be capturing nonwords that stand out se-
mantically as nonwords, similar to the way in which
a novel taste can stand out as distinct from previ-
ously experienced tastes. The lengthening effect of
PC1 may thus relate to previous work on spoken
word duration [10, 4] that observed longer word du-
rations in connection with decreased entropy. PC2,
on the other hand, may reflect what in interactive ac-
tivation models would be understood as competition
among semantic neighbors [6], resulting in longer
durations in speech production.

3.2. Nonword RTs

Most responses were executed after nonword offset,
with only a few exceptions (1.5%). Given that
nonword duration is well correlated with reaction

Table 1: PCA loadings for the semantic measures.
PC1 PC2 PC3

EDNN 0.51 0.80 -0.30
ALC -0.58 0.59 0.58
NNC -0.64 0.12 -0.76
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Figure 1: Predictor effects on nonword duration.
The shaded area indicates 2 standard error bounds.

time (r = 0.37), and is the dominant predictor
when reaction times are measured from word
onset, we focused on reaction times measured from
nonword offset. Responses that were made before
stimulus offset were excluded. RTs were Box-Cox
transformed (λ = 0.26).
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Figure 2: Predictor effects on nonword RTs. The
shaded area indicates 2 standard error bounds.

We again made use of a GAMM to predict RTs
from the two phonological measures and the two se-
mantic PCs, now also including by-subject and by-
nonword random intercepts. Compared to a baseline
model with only the two phonological measures,



model fit significantly improved with the inclusion
of the two semantic measures (∆ AIC = 141 units).

As shown in the upper left panel of Figure2, RTs
increase with PhonND, suggesting that it is harder
to reject a nonword when it has many word neigh-
bors of similar phonological make-up. The effect
of BiphProb, on the other hand, is much attenuated
and irregular in shape. Both semantic measures re-
veal downward trends. As for duration, the effect of
PC1 levels off for low values.

4. DISCUSSION

This study shows that nonword processing is in-
fluenced not only by form similarity (as gauged
by phonological neighborhood density and biphone
phonotactic probability) but also by nonword se-
mantics. First consider the effects of form similarity.

Form effects on RTs support Vitevitch and Luce’s
proposal that nonword processing in the lexical de-
cision task is determined by PhonND [16]: The ef-
fect of PhonND on RTs was strong, whereas that of
BiphProb was weak and U-shaped. For words, Gahl
et al. [7] showed that PhonND and BiphPhon are
positively and strongly correlated, and have simi-
lar effects on acoustic duration. For the nonwords
of our study, however, their effects are opposite,
and the two measures are not well correlated (r =
−0.12). This may be due to the much wider range
of syllable types and word lengths in the MALD
nonword data. For instance, when we restrict the
dataset to CVC nonwords, the syllable type figur-
ing in Gahl et al., a positive correlation between
PhonND and BiphProb emerges. Another poten-
tial cause that leads to the discrepancy between the
present study and the previous one is genre differ-
ence. While we examined productions elicited by a
naming task, Gahl et al. investigated spontaneous
speech. We leave the interaction of syllable struc-
ture, word length, morphological complexity, genre
type, and phonological measures for future investi-
gation, as the focus of the present study is on seman-
tic influences on RTs and durations.

Figure 3 helps clarify the semantic effects we ob-
served. The semantic vector of a target nonword
is shown in blue, and the vectors of two words are
shown in red and orange. These words are at the
same Euclidean distance d from the target, but the
angles between their vectors and the target nonword
vector differ: α1 > α2. The EDNN measure is the
radius d to the closest neighbor. The ALC and NNC
measures relate to the angles α . The ALC measures
how closely oriented the nonword target vector is to
the mean of all word vectors, and the NNC measures

Figure 3: Semantic neighbors (Nw1 and Nw2) can
be at the same distance d of a target nonword Tnw
and yet be at different angles (α1 and α2) from the
target vector, and hence differ in their semantic
similarity (as guaged with the cosine similarity or
correlation measures).

the similarity in orientation for the neighbor with the
smallest angle α . Larger positive values of PC1 rep-
resent nonwords with a large radius d and large an-
gle α1, i.e., less semantically similar neighbors. Or-
thogonal to this, larger values on PC2 represent non-
words with large radius d but small angles (α2), i.e,
semantically more similar words.

The analysis of the RTs suggests that the radius d
may inform lexicality decision, as for nonwords with
larger radius d (i.e., larger EDNN), reaction times are
shorter. Such stimuli are clearly nonwords. The lev-
eling off of the effect of PC1 on RTs and durations
may reflect the consequences of using a threshold θ

for nonword decisions based on the radius d:

RT ∝ I[d≤θ ]a+ I[d>θ ](a−bd), b > 0,

where I[x] evaluates to 1 if x is true, and to 0 other-
wise. For stimuli with large d, their nonword status
is so clear that they can be produced with confidence
by the speaker reading out the nonwords, resulting in
longer durations [10, 4].

In conclusion, the present study offers evidence
that nonwords do project into semantic space, and
that where they land in this space affects both speech
production (acoustic durations) and comprehension
(RTs). Furthermore, it appears that not only se-
mantic similarity (the angles between nonword and
word vectors) but also the Euclidean distance be-
tween these vectors plays a substantial role. Pos-
sibly, lexicality decisions are based, at least in part,
on whether the semantic distance of a nonword to
its nearest word neighbor is greater than some fixed
threshold.
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