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ABSTRACT

The “Ganong effect” [4] refers to listeners’ pref-
erence respond to ambiguous steps from a word-
nonword continuum with the endpoint category that
makes a word. Interactive models such as TRACE
[7] attribute this preference to feedback from the lex-
icon to signal evaluation, while autonomous models
such as MERGE [9] attribute it instead to feedfor-
ward from the lexicon to a task-specific phoneme-
decision module. A categorization and discrimina-
tion experiment produced the expected lexical bi-
ases in categorization, corresponding shifts in lo-
cal discrimination peaks, but consistently no greater
cumulative discriminability in word-nonword con-
tinua than word-word continua. Simulations us-
ing jTRACE [10] show that this interactive model
neither predicts better discriminability to word-
nonword than a word-word continuum nor lexical
biases.
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1. INTRODUCTION

The debate between interactive and autonomous
models of speech perception remains unresolved
[8, 9]. To contribute new evidence and argument, I
assessed the success of simulations using an interac-
tive model, jTRACE [7, 10], in predicting the results
of categorization and discrimination experiments.

2. EXPERIMENTS 1A,B

In Exp. 1a, listeners categorized a syllable-final /p-t/
continuum in contexts where either /p/, /t/, or both
made a word. In Exp. 1b, they discriminated pairs
of stimuli from this continuum.

2.1. Method

2.1.1. Stimuli

Members of a 20-step /p-t/ continua were presented
in the contexts /hi-, hu-, ki-, gru-, mi-, Su-/, yield-
ing no-(lexical)-bias word-word continua, heap-heat
and hoop-hoot, /p/-bias word-nonword continua,

keep-*keet and group-*groot, and /t/-bias nonword-
word continua, *meep-meet and *shoop-shoot. The
continua were made by manipulating the vowel-to-
consonant formant transitions and mixing the /p/ and
/t/ bursts in complementary proportions.

2.1.2. Procedures

Exp. 1a: Categorization. Listeners were trained
to respond “p” or “t” with correct-answer feedback
with 10 repetitions of each continuum endpoint. In
the ensuing 6 test blocks, steps {1, 20}, {4, 6, 16,
18}, and {8, 10, 12, 14} were presented in a 1:2:3
ratio. Stimulus presentation was randomized in both
training and testing. Each trial comprised a 500-ms
display of a cross, the stimulus, a 1500-ms response
interval, a 750-ms display of correct-answer feed-
back on training but not test trials, and a 750-ms ITI.
Exp. 1b: Discrimination. The format was AX,
with a 750-ms ISI. In different trials, stimuli differed
by 4 steps: 1 vs 5, 3 vs 7, 5 vs 9, 7 vs 11, 9 vs 13,
11 vs 15, 13 vs 17, and 15 vs 19. Stimulus presen-
tation was blocked by stimulus pair. A block began
with randomized unscored training trials in which
all 4 possible stimulus orders were presented once
in each of the six contexts. The 4 possible orders
were then presented 6 times each in all 6 contexts,
yielding 144 randomized test trials per block, twice
on separate days, yielding 24 same and 24 different
trials/stimulus pair/context/participant. Order of test
blocks was counterbalanced across subjects with a
balanced Latin square. Each trial comprised a 500-
ms display of a cross, the 2 stimuli, a 1500-ms re-
sponse interval, a 750-ms display of correct-answer
feedback, and a 750-ms ITI.

2.1.3. Listeners

16 adult native monolingual speakers of American
English participated in Exp. 1a, and another 33 in
Exp. 1b.

2.2. Results

Exp. 1a: Categorization. Fig. 1 shows that listen-
ers responded “p” more often in the /p/-biased con-
texts, /ki-/, /gru-/ than the /t/-biased contexts /mi-/,



/Su-/. They were also biased to respond “p” more
often after /i/ than /u/.

Figure 1: Mean proportion “p” (95% CI) in /i/
(top) and /u/ (bottom) contexts.
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The relative proportion of “p” to “t” responses
was submitted to a mixed effects logistic regression
model with fixed effects: Step along the /p-t/ contin-
uum, Lexical Bias (/p/-bias: /ki-/, /gru-/ = 0.5; no-
bias: /hi-/, /hu-/ = 0; and /t/-bias: /mi-/, /Su-/ = -0.5),
and Vowel (/p/-bias: /ki-/, /hi-/, /mi-/ = 0.5 vs /t/-
bias: /gru-/, /hu-/, /Su-/ = -0.5). All fixed effects were
scaled. De-correlated random effects of listener on
the intercept and the slopes of the fixed effects were
included. The estimates in Table 1 show that listen-
ers were not biased to respond “p” (non-significant
intercept), they responded “p” less often as the stop
became less /p/-like (negative Step), and more of-
ten when the lexical context biased them toward “p”
(positive Lexical Bias) and when the vowel was /i/
(positive Vowel). No interactions between fixed ef-
fects were significant.

Exp. 1b: Discrimination. As expected from Exp.
1a, discriminability (d′ values) was greater in the up-
per half of the continuum nearer to the /t/ endpoint
(pairs 9 vs 13 to 15 vs 19) than in the lower half
nearer to the /p/ endpoint (pairs 1 vs 5 to 7 vs 11)
for the context /hi-/ where the vowel shifted the cat-

Table 1: Exp. 1a: Fixed effects estimates.

Est se z p

Intercept 0.231 0.233 -0.989 0.321
Step -3.299 0.216 -15.271 <0.001
Lexical 0.256 0.052 5.189 <0.001
Vowel 0.417 0.119 3.503 <0.001

egory boundary away from the /p/ endpoint in Exp.
1a but greater in the lower half for the context /hu-/
where the vowel shifted the boundary toward from
/p/ endpoint (Fig. 2). Although discriminability is
consistently greater in the upper than the lower half
for all the lexically biasing contexts, that difference
is still greater for the /p/- than /t/-biased contexts,
/ki-/ vs /mi-/ and /gru-/ vs /Su-/.

Figure 2: Mean lower and upper half cumulative
discriminability (95% CI).
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Continuum Half (lower = -0.5, upper = 0.5) re-
placed Step in a mixed effects linear model compar-
ing upper and lower half cumulative discriminabil-
ity scores (summed d′s). De-correlated random ef-
fects of listener on the intercept and the slopes of the
fixed effects were included. The estimates in Table
2 show that discriminability was greater than chance
(positive Intercept) and greater in the upper than the
lower half of the continuum (positive Half). Neither
Lexical Bias nor Vowel influenced discriminabil-
ity independently (non-significant main effects), but
both interacted significantly with Half (positive in-
teractions with Half): discriminability was relatively
greater in the upper than the lower half when either
Lexical Bias or Vowel favored “p” in Exp. 1a.

Cumulative discriminability across the continuum
(summed d′s) differed little between contexts (Fig.
3). A mixed effects linear model produced only a
significantly positive intercept. Bayes factors from
paired-sample t-tests showed that cumulative d’ val-
ues from each lexically biasing context do not dif-



Table 2: Exp. 1b: Fixed effects estimates.

Est se t p

Intercept 5.870 0.296 19.809 <0.001
Half 0.666 0.207 3.225 0.003
Lexical 0.021 0.073 0.293 0.770
Vowel -0.025 0.081 -0.311 0.758

Half:Lex 0.357 0.074 4.805 <0.001
Half:Vwl 0.512 0.088 5.796 <0.001

fer from those in the corresponding no-bias context:
/ki-/ vs /hi-/ 0.719, /mi-/ vs /hi-/ 0.280, /gru-/ vs /hu-/
0.217, and /Su-/ vs /hu-/ 0.227.

Figure 3: Exp. 1b: Cumulative discriminability
(95% CI).
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2.3. Discussion

These experiments show that the category bound-
aries and local discrimination peaks shift in concert
away from the word endpoint, but that cumulative
discriminability across the continuum does not differ
between word-nonword and word-word continua.

3. SIMULATIONS

jTRACE simulations were run to test the prediction
that feedback from the lexicon improves cumulative
discriminability for a word-nonword compared to a
word-word continuum, e.g., for keep-*keet vs heap-
heat. This prediction arises if:

1. The /p/ node were excited more by the features
of the pair member closer to the /p/ endpoint
than by the member further away,

2. The keep node were in turn excited more by the
closer member,

3. The keep node’s greater excitation fed back
more strongly to the /p/ node for the closer than
the further member,

4. No feedback from the lexicon excited the /t/
node more for the further than the closer mem-
ber,

5. The /p/ node inhibited the /t/ node more for the
closer than the further member.

Jointly, these effects would increase /p/ activa-
tion and decrease competing /t/ activation more for
the closer than the further member in the word-
nonword keep-*keet continuum than in the corre-
sponding word-word heap-heat continuum. Since
response probability depends on activation, and dis-
criminability is predicted from differences in re-
sponse probabilities between members of stimulus
pairs, better pair-wise and cumulative discriminabil-
ity is predicted for a word-nonword continuum than
a word-word continuum.

A 202-word lexicon was constructed compris-
ing all the CVC, CV, and VC English words
from IPhOD2 [11] that could be generated with
jTRACE’s phoneme inventory. Homophones were
treated as single words and their SubtLex frequen-
cies [1] were pooled. Non-default parameter values
were phoneme-word weight 0.05, word-phoneme
weight 0.02, feature decay 0.02, word resting acti-
vation -0.1, log frequency phoneme-to-word weight
0.13 [2], and stochasticity 0.02 [6]. The possi-
ble outputs were the stop consonants /p, t, k, b,
d, g/ or a word boundary, the exponent of the
Luce forced-choice rule was 7, and alignment was
8 [3]. Each simulation ran for 80 cycles. Each
member of a 5-step /p-t/ continuum was simulated
200 times for these contexts (frequencies per mil-
lion words for words) for: Coda targets: Word-
word: sheep (13.43)-sheet (11.61), seep (0.18)-seat
(78.78), shop (53.86)-shot (227.43), soup (25.2)-
suit (68.61), loop (8.65)-loot (3.92); Word-nonword:
deep (76.39)-*deet, leap (6.67)-*leat, sop (0.27)-
*sot, dupe (0.65)-*dute; Nonword-word: *roop-
root (31.82), *shoop (0.2)-shoot (168.55), *dop-
dot (6.63), *rop-rot (7.73); Onset targets: Word-
word: peak (11.52)-teak (0.39), peel (5.82)-teal
(0.67), pool (46.98)-tool (10.75), pol (0.45)-tol
(0.73); Word-nonword: piece (194.2)-*tiece, peep
(4.43)-*teep, poop (5.59)-*toop, pos (0.31)-*tos;
Nonword-word: *peague-teague (0.2), *peer-tear
(1.06), *pube-tube (16.43), *poot-toot (1.57).

Figs. 4 and 5 show z-scores for the median proba-
bility of a “p” response between cycles 45 and 75.
These medians change equally quickly for word-
word, word-nonword, and nonword-word continua.
Simulations pooled within continuum type do not
produce the expected lexical biases (Table 3).

Da values were calculated for each pair of stimuli
(Eq. 1): H = P(“p”) to the more /p/-like member of



Table 3: Total proportions “p” (95% CI).

Bias Coda Onset

word-word 0.443 (0.080) 0.473 (0.073)
word-nonword 0.457 (0.082) 0.482 (0.073)
nonword-word 0.457 (0.082) 0.473 (0.072)

the pair, F = P(“p”) to the less /p/-like member, s =
the ratio of the H and F z-score ranges between their
0.16-0.84 quantiles (Ch. 3 [5]).

(1) da =

√
2

1+ s2 [z(H)− sz(F)]

Figure 4: z(P(“p”), simulations (points), co-
das, loess smoothers: (black) word-word, (ochre)
word-nonword, (blue) nonword-word continua.
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Figure 5: z(P(“p”), onsets.

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4
Step /p-t/

z
(M

e
d

ia
n

("
p

")
)

Context

ik
il
ul
al
is
ip
up
as
ig
ir
ub
ut

Onset

Figs. 6 and 7 show that simulated stimuli were

predicted to be no more discriminable across the
continuum for the word-nonword nor nonword-
word than word-word continua.

Figure 6: Cumulative da. Contexts as in Fig. 4.
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Figure 7: Cumulative da. Contexts as in Fig. 5.
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4. CONCLUSION

These simulations predict no greater cumulative dis-
criminability for word-nonword nor nonword-word
than word-word continua, and therefore that an in-
teractive model would predict the finding in the
Exp. 1b that cumulative discriminability would not
differ across the three continuum types. But they
also don’t produce the expected lexical biases, so
do they test the prediction that feedback from the
lexicon improves cumulative discriminability for a
word-nonword compared to a word-word contin-
uum? (James Magnuson generously helped me in
producing the simulations.)
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