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ABSTRACT 
 

Variability is widespread in speech, but it is 
unlikely that all of it is harmful; variability in other 
domains has been shown to allow flexibility, within 
limits. Using one technique for separating the two, we 
applied Uncontrolled Manifold Analysis (UCM) to 
vowels in running speech. This results in two 
multidimensional manifolds, one the controlled 
manifold, where variation is harmful relative to the 
target, and a complementary uncontrolled manifold, 
where variation is benign. Utterances from 32 
speakers of English were analysed acoustically and a 
UCM analysis (with intended vowel category as the 
target) was extracted. This was compared to the UCM 
analysis of 4 second-language (L2) speakers of 
English (Korean L1). Results indicate that L2 
speakers had smaller uncontrolled variability, 
consistent with their lower accuracy. UCM suggests 
the possible direction of variability that L2 speakers 
need to master. Simulating along the controlled vs. 
uncontrolled manifolds further supports this 
suggestion. 
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1. INTRODUCTION 

Variability in speech is both well-recognized and 
poorly understood, despite decades of research [7, 10]. 
Variability is extensive in all biological systems, of 
course, and recent advances in analysis have begun to 
separate the variations into two useful categories: 
harmful and benign [13, 14].  The technique of 
Uncontrolled Manifold Analysis (UCM) allows the 
exploration of different partitionings of variability 
into task-relevant (i.e., harmful-to-task) and task-
irrelevant (i.e., benign-to-task) components without 
having to define these dimensions a priori [12]. The 
controlled manifold is that combination of 
dimensions in the data constrained to be within a 
minimal range, otherwise the target cannot be reached.  
It suggests the dimensions that are under neurological 
control [13]. The uncontrolled manifold, then, is that 
range of variability that can be tolerated while still 
reaching the target. The CM defines success, while 
the UCM defines flexibility. 

Successful mastery of an action has been found to 
result in an overall decrease in motor variance while 
the UCM variability remained larger than the CM 
variability [8, 20]. Forcing the motor system to adapt 
to a broader range of conditions can also increase 
flexibility [3]. 

Very few UCM analyses of speech have been 
performed to date. Saltzman, Kubo and Tao [12] 
provide a theoretical basis for constructing the task 
space for the CM in terms of articulator constrictions; 
a corresponding CM based on acoustic targets would 
require a secondary hidden Markov model to provide 
the necessary input. Szabados and Perrier [16] 
addressed the issue of motor equivalence [11].  They 
found synergistic movements in the simulated 2D 
vocal tract to achieve formant targets for 10 French 
vowels. Given the variability of formants themselves 
[4] as well as the unnaturalness of the simulated 
speech, however, applicability to natural speech is 
unclear.  

In addition, control and flexibility in second 
language (L2) speech remains to be explored.  It is 
undetermined whether the L2 accented speech is 
comparable to L1 speech for the use of UCM and how 
that interacts with overall accuracy. Studies have 
demonstrated L2 speech deviates acoustically from 
L1 speech [2, 9]. Whether this deviation from L1 
indicates harmful or benign to producing the target 
has not been explored. 

The present project uses UCM analysis to address 
these issues through specific questions:  Does the 
UCM differ for second language (L2) speakers 
compared to L1 speakers? Does this difference reveal 
harmful variability for the target achievement? 

2. EXPERIMENTAL DATA 

The basis for the UCM analysis of English L1 
speakers was the X-ray Microbeam dataset (XRMB) 
from the University of Wisconsin [17]. 32 speakers 
who had been previously analysed by others [18] 
were selected. These speakers read a list of words and 
sentences as well as sequences of syllables while their 
productions were simultaneously recorded by the 
movements of gold pellets attached midsagittally on 
the tongue and the lips including other reference 
points. The pellet sensors were sampled at 145.54 Hz 
and the sound files were recorded at the sampling rate 



of 21,739 Hz. These acoustic recordings were further 
re-sampled to 10 kHz to narrow the frequency range 
up to 5 kHz, which roughly corresponds to the 
linguistically meaningful range for American English 
vowels [4]. 

After selecting the nine monophthong vowels (/i, 
ɪ, ɛ, æ, ɑ, ʌ, ɔ, ʊ, u/) [18], the Short-Time Fourier 
Transform (STFT) was computed at each vowel mid-
point based on the acoustic analysis window (45 msec) 
and the frequency bins (1024). Vowels smaller than 
this window were ignored. To reduce the redundancy 
in the STFT spectrum, 40 linear filter banks were 
computed. The extracted filter banks were z-score 
normalized by speaker for the cross-speaker 
comparison.  

To compare with the second-language speakers, 
the electromagnetic articulography (EMA) 
recordings of the four L2 speakers (2 female) whose 
L1 is Korean were used. These L2 speakers read 
newspaper articles (one written in English and the 
other in Korean) at their normal speed in a laboratory 
environment. Only the recordings of the English 
article were analysed for the current project. Despite 
the L2 accentedness, speakers were relatively fluent 
in English. Their passage reading was recorded both 
articulatorily (sampled at 200 Hz) and acoustically 
(sampled at 16 kHz). Likewise, the acoustic 
recordings were re-sampled to 10 kHz. Speaker-wise 
normalization was applied by z-scoring.  

10 principal components were calculated from the 
40 normalized linear filter banks using Principal 
Component Analysis (PCA), combining both XRMB 
and L2 dataset to make shared PCs across speakers. 
Mel filter banks were also tested; however, the 
amount of the explained variability for the data was 
less (81.8%) than that of linear filter banks (88.75%), 
which led us to use linear filter banks instead. 

 
3. UNCONTROLLED MANIFOLD 

METHOD (UCM) 

3.1. Forward mapping computation 

UCM analysis depends on both input and outcome 
data being multidimensional, allowing the method to 
apply to a great many types of data. The UCM method 
decomposes n-dimensional input data space into two 
subspaces (“manifolds”), one of which (the CM) will 
affect the outcome, and the other of which (the UCM) 
will not (meaningfully) affect the outcome. The CM 
and UCM manifolds are orthogonal to each other and 
their dimensional sum is n as defined within the n-
dimensional input space. Once the two spaces, UCM 
and CM, are computed, we can project the input data 
on each of the spaces.  If the variance on the UCM is 
higher than on the CM, there is synergy and the UCM 

represents benign variation; if not, there is no benign 
variability (UCM = CM) or even destructive 
compensation (UCM < CM).  The larger the 
UCM/CM ratio, the greater the synergy [6]. 

UCM analysis requires a known forward mapping 
from the elemental variables to the task variables. The 
mapping from the acoustics to the perceptual sound 
categories, however, are not directly estimable. Using 
linear regression [1, 5] can possibly approximate this 
relationship; however, the linear methods are often 
error-prone where the underlying data includes more 
complex relationship rather than being linear. This 
led us to the use of deep neural networks. The hyper 
parameters of our neural networks are: three hidden 
layers, 500 nodes, sigmoid activation, dropout with 
0.5 [15], 20% held-off for test set. The vowel 
categories were determined as the forced aligned 
segmental labels [21] because both dataset were 
elicited speech. That is, there were explicit target for 
the speech. Whether the segmental labels match with 
the human perceptual identification of vowels is not 
pursued in the current project. To account for the 
cross-speaker differences, the neural-network 
forward mapping function was trained for individual 
XRMB speakers, resulting in 32 forward mapping 
models. 
 
3.2. Jacobian matrix and null space 
 
After establishing the forward mapping function from 
the acoustics (10 dimensional; i.e., 10 PCs) to vowel 
targets (9 dimensional; i.e., 9 vowels), the Jacobian 
matrix is defined as the partial derivatives of the 
vowel target variables with respect to the 𝑛 acoustic 
variables, as follows: 
 
(1)          𝑌 = 𝑓(𝑋) 
(2)         𝐽(𝑋) = 	𝜕𝑌/𝜕𝑋, 
 
where 𝑋  is 10-d acoustic variables, 𝑌  is 9-d vowel 
target variables and 𝑓  is a neural-net forward 
mapping function. The function J(.) is the Jacobian 
matrix, and 𝜕𝑋 and 𝜕𝑌 indicates small displacements 
in acoustic spaces and task (vowel target) spaces, 
respectively. 

The Jacobian matrix (𝐽), defined in (2), captures 
how much changes in the elemental variables (i.e., 10 
PCs from linear filter banks) result in the changes in 
the task variables (i.e., vowel probabilities). For the 
current project, the calculations of partial 
differentiation were approximated numerically. Once 
the Jacobian matrix was calculated, the UCM space is 
defined as the null space (spanned by the basis vector 
𝜀-./	) of the Jacobian, calculated by Singular Value 
Decomposition, denoted as 𝜀 as in (3): 
 



(3)           𝐽 ∙ 𝜀 = 0, where 𝜀 ≠ 0. 
 
Varying along this UCM space indicates benign-to-
task variability (flexibility). The space which is 
orthogonal to the UCM space is defined as the CM 
space, denoted as 𝜀3. Movements along the CM space 
are harmful to the task (i.e., vowel probabilities). The 
amount of benign-to-task and harmful-to-task 
variabilities were calculated as the standard 
deviations of the projection of 10-d acoustic features 
on to the UCM space and the CM space respectively, 
normalized by the degree of freedom of each space. 
The formulation is described in (4) and (5): 
 
(4)          𝑈𝐶𝑀789:;<=;/ = (𝑋 ∙ 𝜀) 	 ∙ 𝜀>  
               𝐶𝑀789:;<=;/ = (𝑋 ∙ 𝜀3) ∙ 𝜀3>, 
(5)          𝑈𝐶𝑀?<98; =

@ABCDEFGHIJHK

LMNOP
 

              𝐶𝑀?<98; =
@BCDEFGHIJHK

LMOP
, 

             
where the standard deviation of 𝑈𝐶𝑀789:;<=;/  and 
𝐶𝑀789:;<=;/  is divided by the degrees of freedom, 
𝐷𝐹ABC  (i.e. 1) and 𝐷𝐹BC  (i.e. 9), respectively. 
𝑈𝐶𝑀?<98; denotes the amount of benign-to-task 
variability and 𝐶𝑀?<98;  that of harmful-to-task 
variability. The computations of UCM and CM 
spaces for native speakers were based on each 
speaker’s own forward mapping model as described 
in Sec. 3.1. For L2 speakers, the UCM and CM spaces 
were calculated based on a selected single native 
English speaker’s forward mapping (JW14). Instead 
of training data from all native speakers, only a single 
speaker was chosen as a reference because accounting 
for individual vocal tract differences is beyond the 
scope of the current study. This was left for the future 
work. For the same reason, only one L2 speaker (F36) 
was chosen for the comparison.  
 

4. RESULTS 
 
4.1. Accuracy of the forward mapping 
 
The mean accuracy of our neural-net forward 
mapping models for the native speakers was 78% 
(SD=5%), tested on the held-off test set (20% of the 
total data). Figure 1 demonstrates the confusion 
matrices for a female native speaker (JW14) and a 
female L2 speaker (F36), both of whom were in their 
mid-thirties. As expected, the mean accuracy for F36 
(L2) (39.18%) is lower than that for JW14 (L1) 
(85.47%). In particular, the English vowels pairs /i, ɪ/ 
and /ɛ, æ/ each map on to a single vowel in Korean 
[19] and were more susceptible to be confused than 
others for Korean speakers as shown in Figure 1 (58% 
for /i/, 33% for /ɪ/, 16% for /ɛ/ and 37% for /æ/). 

 
Figure 1. The confusion matrices for 9 vowel 
categories from the forward mapping model. 
Accuracies are annotated in each cell. Top: result 
from a female native speaker (JW14). Bottom: 
result from a female L2 speaker (F36). 
 

 
 

 
 
4.2. UCM and CM scores 
 
The overall distribution of UCM and CM scores is 
shown in Figure 2. The results of two one-way 
ANOVA models, for UCM and CM separately, with 
Nativity (‘Native speakers’ vs. ‘L2 speakers’) as the 
main effect, indicated a significant effect of Nativity 
on the UCM scores (F(1, 203) = 6.53, p < 0.05), but 
not on the CM scores (F(1, 203) = 3.26, p = 0.07). 
 

Figure 2. The overall UCM and CM scores 
separated by native English speakers (blue) and L2 
speakers (red). n.s. indicates no significant 
difference. 
 



 
 
4.3. A comparison of L1 vs. L2 
 
The UCM scores for the native English speakers were 
significantly higher than those of L2 speakers as 
shown in 4.2., indicating lesser benign variability in 
L2 speech than that of the native speakers. Whether 
this difference in the amount of benign variability, or 
UCM score, is related to the acoustical differences 
were further investigated by reconstructing the 
possible range (−1.5 to +1.5 SD) of benign variability 
based on the native English speaker’s vowel 
production. Figure 3 and Figure 4 illustrate the vowel 
spectra of English /ɪ/ and /ɛ/, respectively, by the 
same female native speaker (JW14) simulating 
changes in the UCM weighting from −1.5 to +1.5. For 
comparison, two vowels from a female L2 speaker 
(F36) are shown in the lower panel of Figure 3: an L2 
/ɪ/ and an L1 (Korean) /i/, ‘이’. There is very little 
difference between these two, consistent with a lack 
of distinction in L2 production.  As can be expected, 
the formants for L2 /ɪ/ do not match any of the 
candidates from the L1 English speaker’s UCM range 
in the upper panel of Figure 3. For English /ɛ/ in 
Figure 4, L1 /ɛ/ and L2 /ɛ/ are separable under 2236 
Hz (lower panel). The alignment of F2 is also fairly 
close between the native /ɛ/ and L2 /ɛ/, ‘애’; however, 
it has relatively lower amplitude than the native 
speaker’s. The spectral envelop for L2 /ɛ/ still does 
not align with the native speaker’s UCM range, 
indicating the sizable deviation from the benign 
variability. 
 

Figure 3. Top: a native English speaker’s range of 
benign acoustic variability from −1.5 (red) to +1.5 
(blue) weighting of the UCM for the vowel /ɪ/. 
Bottom: an L2 speaker’s mean spectrum of /ɪ/ 
(black line) overlaid with their mean L1 Korean 
vowel /i/, ‘이’ (dashed line).  

 

 
 

Figure 4. Vowel spectra of English /ɛ/. Top: a 
native English speaker’s range of benign variability 
from −1.5 (red) to +1.5 (blue) weighting of the 
UCM for the vowel /ɛ/. Bottom: a L2 speaker’s 
mean spectra of each vowel (black line) overlaid 
with their mean L1 Korean vowel /ɛ/, ‘애’, (dashed 
line) for the comparison. 

 

 

5. DISCUSSION 

Taking acoustics as a means of examining variability 
in L1 and L2 vowel production allowed us to separate 
benign and destructive variability via the 
uncontrolled manifold (UCM) analysis.  L2 speakers 
were found to have consistently smaller UCM scores, 
indicating a less flexible control of the English vowel 
space. A simulation in the UCM space further 
demonstrated how the L1-L2 difference in UCM 
scores is reflected in the spectrum, possibly as an 
indicator of L2 accentedness. 

Redundancy is common in language, and here it 
can be seen as a part of flexibility: When multiple 
means of conveying a category exist, speakers are 
able to adapt to changing circumstances. While there 
are individual differences in such variability [18], 
there are presumably language-specific differences as 
well. Mastering that variability is therefore 
presumably part of competence and, ultimately, the 
reduction of L2 accent. 
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