
FOURIER WITHOUT FORMULAS

David Weenink

University of Amsterdam
david.weenink@uva.nl

ABSTRACT

We describe a computer application based on the
program Praat[2] that offers teachers and students
the possibility to get more insight into Fourier syn-
thesis and -analysis without using formulas. In the
application the Fourier components are represented
as pure tones. All kinds of relations between sums
of pure tones can be synthesized, visualized and lis-
tened to. The number of tones as well as their fre-
quencies and phases can be varied at will. The pro-
gram, among others things, makes it straightforward
to demonstrate visually and audibly that sums of
harmonically related tones always generate periodic
sounds, and sums of non-harmonically related tones
do not. As a link to the importance of the amplitude
spectrum in speech analysis, the ear’s insensitivity to
phase can be demonstrated by generating an infinite
number of different wave forms that nevertheless all
sound the same.

Keywords: interactive phonetic education, peri-
odicity, spectrum, sine function, speech synthesis,
speech analysis.

1. INTRODUCTION

Explaining to students of linguistics the elements of
spectral analysis and synthesis is not easy. A lot of
terminology from physics and mathematics is gener-
ally needed which is outside the domain of linguis-
tics. Fourier applications on the internet usually are
too technical or do not connect to perception; some
examples are [1, 3, 4, 5, 6]. Our application im-
proves on what is available by always having a link
to perception. It uses sounds in order to facilitate
the insight into spectral analysis and synthesis and it
doesn’t need the formulas to do so. In the current
version the application is implemented as a demo
script which runs on top of the program Praat[2].
The application’s main function is to facilitate the
understanding of synthesis and analysis of complex
sounds from simple sinusoidal components by link-
ing them to perception. Before we describe its pos-
sibilities, we first have to introduce its interface.

2. THE GENERAL LAYOUT OF THE
INTERFACE

Figure 1: Initial view.

Fig. 1 shows the program’s main window, where
the important parts of its interface have been out-
lined with four rectangular boxes numbered 1 to 4.

Box 2, at the top right, is the central part of the
interface as it shows the synthesized sound. With
default settings the first 0.03 s of a periodic sound of
0.5 s duration are shown. This happens to be exactly
three periods. A left mouse click in the sound rect-
angle plays the total synthesized sound of 0.5 s du-
ration. Playing only 0.03 s of the sound would result
in a short plop-like sound whose frequencies cannot
be very accurately analyzed by our ears.1 In the fig-
ure it is easy to see that each period lasts 0.01 s and
that its fundamental frequency is 100 Hz. The ver-
tical amplitude scale for this particular synthesized
sound varies between -1.8 and +1.8.

The sound in box 2 has been synthesized from the
two components which are displayed in box 3 be-
low it. These two components are exactly lined up
with the synthesized sound and have an amplitude
scale which is not shown because it is always fixed
between -1.0 and +1.0. At the right of each compo-
nent we show the sine function of the correspond-
ing component. For example for the first component
it reads 1.0sin(2π100t) and it can be easily veri-
fied from the figure that this formula describes a pure
tone of 100 Hz because one period lasts 0.01 s. We
think these formula’s are almost inevitable as they



describe the form of each frequency component as
a function of time while their frequency is also dis-
played (in blue colour because we use colour coding
as will be explained further on). As was the case for
the synthesized sound, a simple left mouse click in a
component’s rectangle plays the corresponding tone
of 0.5 s duration. In summary, the boxes 2 and 3
together show Fourier synthesis.

Box 1 shows the amplitude line spectrum of the
sound displayed on a linear frequency scale as well
as on a linear amplitude scale. We have limited the
upper frequency to 1000 Hz for the same reason as
we limited the view in box 2 to 0.03 s: the important
things should be easy to see. We deliberately show
the line spectrum in order not to confuse people
since the real spectrum can have different appear-
ances depending on whether the components do or
do not “fit” in the duration of the sound. The vertical
scale is linear to have a clearly visible relation with
the corresponding amplitudes of the components in
box 3. Box 1 and 2 together show Fourier analysis
and therefore we have Fourier analysis and Fourier
synthesis represented in the same interface. We will
now explain the settings of the controls in box 4 and
later extend the information about the parts we have
just discussed.

3. THE SETTINGS OF THE CONTROLS

In the settings part of the program, box 4 in Fig. 1,
five rounded gray rectangles are present, each one
with a label on top. These labels read, from top
to bottom, “Number of components”, “Amplitude of
component (Pa)”, “Frequency of component (Hz)”,
“Shift of component” and “Play new / again”. The
top four are used to vary the four parameters needed
to synthesize a sound from multiple sinusoidal com-
ponents. They show below their label the current
setting of the parameter, each in a different colour.
We have used code colouring to relate the important
parts in the interface: amplitudes are always shown
in red, frequencies are shown in blue and phases are
shown in green. Consequently, the outline of the
rectangle controlling the frequencies of the compo-
nents is drawn in blue, as well its current value and
the frequency in the sine-formula of each compo-
nent. Its amplitude is in red. A left mouse click
in one of the top four rounded rectangles pops up
a form which allows us to change the current value
of the parameter. A left mouse click in the rounded
rectangle at the bottom synthesizes a new sound ac-
cording to the settings of the four controls above it
and plays this new sound. In the next part we go into
more details on the specification of the four synthe-

sis parameters.

3.1. Varying “Number of components”

Figure 2: Interface detail. How two components
add up at time 0.0025 s.

As the name suggests, this control offers the pos-
sibility to set the number of components used to syn-
thesize a sound. In Fig. 1 the default number of com-
ponents was set to only 2. In box 3 there is enough
vertical space to display maximally eight compo-
nents. If we choose more than eight components
only the first seven components will be displayed
separately and the accumulated contribution of the
rest of the components will be displayed in the slot
of the “eight” component.

In Fig. 2 we show how synthesis works for a
sound synthesized from two components: synthesis
is adding amplitudes of components time-point by
time-point. The text above the sound in box 2 shows
that it is the sum of two components: “Synthesized
sound (=c1+c2)”. With a left mouse SHIFT-click in
this sound, a vertical cursor hair will be shown that
runs from the top of the sound in box 2 vertically
down to the bottom of the highest component in box
3. Here the current time at the cross hair is dis-
played. At the position where the cursor hair crosses
a sound’s amplitude function, a red dot will be dis-
played (we don’t display the actual amplitude val-
ues as this would clutter the interface). In the figure
there are three of these dots: the amplitude of the
synthesized sound at the cursor hair is the sum of
the amplitudes of the components at the correspond-
ing red dot positions. This is easier to see if we only
use two components. By SHIFT-clicking at a suit-



able number of different time points in the sound we
can show that the amplitudes always add up. In this
way we can demonstrate that Fourier synthesis is all
about adding up components.

3.2. Varying “Frequency of component”

The default setting for “Frequency of component
(Hz)” is component*100.0. This setting has the
effect that the frequency of each component is cal-
culated as a multiplication of its component num-
ber and 100. The first component which has com-
ponent number 1 will therefore have a frequency of
100 Hz (= 1 * 100), the second component will have
a frequency of 200 Hz (= 2 * 100), and so on. The
resulting synthesized sound will always be periodic
with a period of 0.01 s. As an example of this ex-
amen Fig. 1 where two components were synthe-
sized. Now, if we want to demonstrate that a peri-

Figure 3: The sum of harmonically related com-
ponents is always a periodic sound.

odic sound can only be synthesized from harmoni-
cally related components, we have to show the fol-
lowing two things:

1. adding harmonically related tones always re-
sults in a periodic sound, and,

2. adding non-harmonically related components
does not result in a periodic sound.

To start with the first point, the default setting for the
“Frequency of component Hz)” as component*100
suffices. Eight components of frequencies from
100 to 800 Hz will synthesize a periodic sound
with a fundamental frequency of 100 Hz. If we
change the setting to component*150, the synthe-
sized sound will have a fundamental frequency of
150 Hz while the components will have frequen-
cies which are multiples of 150 Hz (i.e. 150, 300,
..., 1200). Whatever we change the number after
component to, the synthesized sound will always
be periodic. One could argue that this happens be-
cause the amplitudes of the components are always
equal to one. We can parry this objection by gener-

ating components whose amplitudes vary randomly
as is demonstrated in Fig. 3. Here we have cho-
sen randomUniform(0,1) as the setting for “Am-
plitude of component (Pa)” with the frequencies of
the 8 components still being multiples of 100 Hz.
The effect of this amplitude setting is that for each
component the amplitude will be a random number
from the interval [0,1). Each value in the [0,1) in-
terval has equal probability of being drawn. For ex-
ample, the number drawn for the first component,
rounded down to two significant digits, happened
to be 0.53 while the amplitude for the 8th compo-
nent happened to be 0.23. These amplitudes are also
clearly shown in the spectrum. The nice thing of this
setting is that every time you now click the “Play
new / Again” button a different sound will be syn-
thesized because of this randomUniform argument.
It is therefore possible to generate an infinite num-
ber of sounds with the same fundamental frequency,
i.e. the same pitch, that sound and look different.
This makes it very easy to demonstrate that the tim-
bre of a sound depends on the amplitude relations of
its components.

Changing the frequency setting to
(component+1)*100 makes it easy to demon-
strate that the first harmonic is not even necessary
for pitch perception. Because of this setting, the first
component will now have a frequency of 200 Hz
((1+1)*100).

The second point above, adding random fre-
quency components, can be demonstrated by choos-
ing for example randomUniform(100,1000) for
the frequency setting. For each component’s fre-
quency a random value between 100 and 1000 is
picked with equal probability. An example of this
is shown in Fig. 4. Amplitudes were all 1.0 as is
shown by the spectrum as well as by the numbers in
front of the sine function on the right of each com-
ponent. The components in box 3 are shown in or-
der of component number. The first component hap-
pened to have a frequency of 120 Hz (rounded down
to three significant digits). The highest frequency,
722 Hz, happened for component 3. In the synthe-
sized sound it is hard to detect any periodicity. Each
time we click the “Play new/ again” button a new
synthesized sound is played with non-harmonically
related frequencies and no detectable periodicity. It
will not be too difficult to convince an audience that
there will be no periodicity in the synthesized sound
however often you click. A proof, of course, can
only be given using the proper mathematics.



Figure 4: The sum of non-harmonically related
components is not a periodic sound.

3.3. Varying “Shift of component”

Figures 1 to 4 show that the amplitudes of the dis-
played synthesized sounds as well as their compo-
nents all start at zero. This was a necessity because
we synthesized with pure sines and they start with
zero amplitude at time zero. It does, however, limit
our synthesis possibilities. If we want to synthe-
size sounds that do not start at zero amplitude, we
need sines that do not start at zero at time zero. By
shifting one or more of the sine components to the
left (or to the right) we can create sounds that do
not start at zero amplitude. Because the compo-
nents are periodic, we can attain all possible am-
plitudes at the start by a shift over maximally one
period. Fig. 5 shows the idea for the first compo-
nent. The setting is a shift of 1

4 (of a period). In
the formula at the right side this shift is multiplied
by 2π and this results in the value for the phase of
the component (displayed in green colour). Nor-
mally only the component’s part within the rectan-
gle is displayed. However, by clicking on the green
number in the formula on its right, the shift is ex-
plicitly shown by the dotted part of the sine curve
at the left of the starting time (a quarter period in
the example). It is easy to demonstrate that setting a

Figure 5: Interface detail. The shift of a compo-
nent by 1

4 of a period.

constant shift for all components results in another
synthesized sound, although the spectrum doesn’t
change and also the sound stays the same. This is
already a hint that the ear is not sensitive to shifts of
the individual components of a sound. However we
can demonstrate this much better, faster and more
convincingly by using the following settings for the

phase: randomUniform(0,1). Together with, say 8
components, amplitudes 1 and a frequency setting of
component*100 one can generate with each click of
the “Play new / again” button a synthesized periodic
sound which looks different from the previous ones
but nevertheless sounds the same. Fig. 3.3 shows
two periodic sounds that despite their very different
form sound the same. Because the amplitude spec-
tra of these sounds are all the same, it shows that
the spectrum covers the essential aspects of human
speech perception.

Figure 6: Interface details. Two synthesized
sounds that sound the same.

3.4. Varying “Amplitude of component”

In the previous section we already introduced
random uniform amplitude variations. Ampli-
tudes can also be varied depending on compo-
nent number. All kinds of Fourier sums can
be synthesized, for example, a sawtooth by us-
ing (-1)�(component+1)/component for the am-
plitudes and component*100 for the frequencies,
where the ˆ stands for exponentiation.

4. DISCUSSION

We have presented an application that makes it rel-
atively easy to show both Fourier analysis and syn-
thesis as well as their links to perception.

5. REFERENCES

[1] Adams, W. K. 2011. Fourier: Making waves - An
interactive simulation for visualising Fourier analy-
sis. The Journal of the Acoustical Society of America
2396.

[2] Boersma, P., Weenink, D. Praat: doing phonetics by
computer [Computer program]. Version 6.0.48, re-



trieved 17 february 2019 from http://www.praat.org/.
[3] Efstatiou, C. E. http://195.134.76.37/applets/

AppletFourier/Appl_Fourier2.html. [Online; ac-
cessed 23 February 2019].

[4] Falstad, P. http://www.falstad.com/fourier/. [Online;
accessed 23 February 2019].

[5] Wikipedia contributors. Fourier analysis. https://
en.wikipedia.org/wiki/Fourier_analysis. [Online; ac-
cessed 23 February 2019].

[6] Wolfram contributors. http://mathworld.wolfram.
com/FourierSeries.html. [Online; accessed 23
February 2019].


