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ABSTRACT

We develop an optimisation approach to near-end
intelligibility enhancement based on a time-varying
spectral shaping to increase speech intelligibility in
non-stationary noise. It works by modifying the first
few coefficients of an auditory cepstral representa-
tion such as to maximise an intelligibility metric us-
ing noise-related information. We experiment with
two contrasting intelligibility metrics. The first is a
glimpse-based objective intelligibility metric that is
derived from an energetic masking model. While,
the second is a discriminative intelligibility metric
building on the principles of missing data speech
recognition, to model the likelihood of specific pho-
netic confusions that may occur when speech is pre-
sented in noise. The latter metric is computed using
a statistical model of speech from the speaker that
is to be enhanced. A formal listening test confirm
the efficiency of the proposed algorithm in enhanc-
ing speech intelligibility in noise.

Keywords: Speech technology, speech perception,
objective intelligibility models, intelligibility en-
hancement.

1. INTRODUCTION

The field of speech intelligibility enhancement, also
referred to as near-end intelligibility enhancement,
has gained much recent interest. While conven-
tional speech enhancement techniques (e.g. [11])
process the corrupted speech signal at the receiver-
side of the communication chain, the intelligibility
enhancement techniques (e.g. [1, 16, 17, 18, 20, 21,
24]) pre-process the clean speech at the transmitter-
side before it is broadcast into the noisy environ-
ment. This paper focuses on the latter approach us-
ing an analysis-modification-resynthesis framework
to promote speech intelligibility in the presence of
noise.

There are many existing intelligibility enhance-

ment approaches that apply spectral-only modi-
fication algorithms in an attempt to imitate the
empirically-observed behaviour of speech produced
in noise (i.e. the Lombard speech [15, 23]) where
more energy is found at higher frequencies [10, 12,
23]. These algorithms are typically generalisations
of high-pass filtering, spectral tilt or centre of gravity
changes that work by optimising an objective metric
of intelligibility for the purpose of minimising the
effect of energetic masking (EM) in a known noise
scenario (e.g. [14, 19, 22]).

In our earlier work [1, 2], an algorithm was pro-
posed to optimally modify the spectral shape by
adapting the first few coefficients of an auditory
cepstral representation such as to maximise an in-
telligibility metric subject to an energy constraint.
Two objective metrics were compared, namely the
Glimpse Proportion (GP) [4] and the discrimina-
tive microscopic intelligibility (DIS) [1]. The GP is
computed as the proportion of the spectro-temporal
(S-T) representation of the speech signal that is free
from masking. This approach maximises the un-
masked acoustic features of speech without pay-
ing attention to their relative perceptual importance.
In contrast, the DIS approach emphasises impor-
tant acoustic features that are believed to underlie
the intelligibility of speech in noise by focusing on
phonemes classes. It employs a statistical speech
model and is computed as the ratio of probability
between the correct transcription and the most prob-
able incorrect transcription (as a single candidate).
It requires a pre-trained speaker-dependent speech
model and employs missing data speech recognition
theory to handle energetic masking [6].

In this work, we aim to advance the work in [1, 2]
by proposing a time-varying spectral shaping algo-
rithm in order to account for the masker’s temporal
fluctuations. The algorithm operates on a sequence
of signal segments. Within each segment, it defines
a spectral weighting pattern for each S-T element
in order to amplify perceptually important S-T ele-



ments above the level of the masker. We hypothesise
that applying a temporally-varying spectral shaping
algorithm to the target speech is likely to be most
beneficial when the masker itself is also modulated,
since it will help define an accurate weight for each
S-T element.

The remainder of this paper is organised as fol-
lows. First, we will explain the general framework
of the proposed method in Section 2. Then, a sub-
jective evaluation and comparison to the reference
method are provided in Section 3 and Section 4. Fi-
nally, the paper is concluded with a discussion and a
conclusion in Section 5 and Section 6, respectively.

2. TIME-VARYING SPECTRAL SHAPING

The spectral modification method, proposed in [1],
works by defining a weight for each frequency band
which remains fixed across time within each band.
In this section, we develop a time-varying spectral
modification in which a weight is defined for each
individual frequency and time-frame.

The signal is considered as a number of temporal
segments each with its own shaping, S, controlled by
N cepstral parameters c = [c1 . . .cn]

T . Specifically, S
is defined as

(1) Sc(t, f ) =
N−1

∑
n=0

atcn cos(
π

F
(n+

1
2
) f ),

where t = 1, . . . ,T , and T is the total number of
frames in the segment, f = 1, . . . ,F and F is the
number of frequency bands and at is a time-varying
scaling factor shaped as a triangle function to max-
imises the shaping in the segment centre and reduce
it to zero at the segment boundaries to ensure conti-
nuity, i.e.

(2) at =

{
2(tT − t)/T if t < tc
2(t − t1)/T if t ≥ tc

Finally, we obtain the modified log spectrogram
X̂(t, f ) for the segment by summing the original log
spectrogram X(t, f ) and the spectro-temporal shap-
ing weights, Sc(t, f ),

(3) X̂(t, f ) = X(t, f )+Sc(t, f )

Note, this is equivalent to modifying the first N co-
efficients of the cepstral representation of X .

After spectrally shaping each spectrogram seg-
ment, segments are concatenated, the time-domain
signal is resynthesised and a level normalisation is
applied across the entire signal to ensure that the en-
ergy of the signal remains unchanged. The optimi-
sation process follows that described in our earlier

time-invariant shaping approach [1] the only differ-
ence being the larger parameter space, i.e., whereas
before we have a single shaping vector, we now have
one per segment.

In this work, segments have been defined by plac-
ing segment boundaries at the dips in the signals
temporal energy envelope. Roughly speaking, each
segment centre will correspond to a vowel centre.
This segmentation is motivated by the fact that the
temporal envelope variations are reduced in the low-
energy parts of speech signal (e.g. nasals, onsets and
offsets) [3]. Thus, the shaping will have least impact
on the most sensitive parts of the signal, reducing
the potential for perceptual distortions.

The parameters for the modification, i.e., the vec-
tors c which control the shaping of the segments, are
then found by optimisation with respect to either the
GP or DIS intelligibility measures. Parameter opti-
misation is performed using the Nelder-Mead Direct
Search method [13]. For details see [1].

3. LISTENING TESTS

Twenty four normal-hearing subjects participated in
the study. Listeners were students and staff at the
University of Sheffield whose age ranged from 18 to
30 years. The listeners were required to be native
English speakers, with no history of speech and/or
language dis-orders. All were paid for their partic-
ipation. Ethics permission was obtained following
the University of Sheffield Ethics Procedure.

The speech materials are from the Grid corpus [5].
The corpus consists of sentences recorded by a total
of 34 native English speakers (18 male and 16 fe-
male). All sentences exhibit the same six words with
a fixed grammar of the form “command” “colour”
“preposition” “letter” “number” “adverb”. There
are 1000 utterances recorded from each speaker
sampled at 25 kHz. The length of each utterance
is about 2.2 seconds.

As additive disturbances, two different noises
were considered: (i) a stationary speech-shaped
noise (SSN) that was generated by filtering white
Gaussian noise through a 100-order all-pole filter,
the long-term average spectrum of this noise was ap-
proximated to match that of the Grid speech mate-
rial, and (ii) a non-stationary N-talker babble modu-
lated noise (BMN), which were produced by modu-
lating SSN with the envelope of N-talker babble for
various N. As in [4], the envelope was calculated
by convolving the absolute value of an N-talker bab-
ble signal with a 7.2 ms rectangular window. Bab-
ble was generated then by summing utterances with
equal rms energy from the Grid corpus. In this study,



N was set to 5.
Three different speech enhancements are com-

pared in the evaluation, namely; ‘TVGP-DRC’,
‘TVDIS-DRC’, and ‘SSDRC’, and one unmodified
natural speech ‘ORG’. The ‘TVGP’ and ‘TVDIS’
denote the time-varying spectral modification by op-
timising the GP metric, and the DIS model, respec-
tively. Both are noise-dependent algorithms. We
further processed the TVGP and TVDIS modified
speech with the time-domain dynamic range com-
pression (DRC) method, as described in [24]. The
DRC works by producing a time-varying gain to re-
duce the envelope variations of a signal. To com-
pare our noise-aware approaches with a state-of-the-
art noise-independent approach, we pre-process the
clean Grid data with the spectral shaping and dy-
namic range compression algorithm as described in
[24]. We refer to this system as ‘SSDRC’

The TVGP and TVDIS were generated with spec-
tral shaping using four cepstral coefficients c (i.e.,
N = 4). Speech spectral shaping was performed us-
ing the filterbank analysis-synthesis framework de-
scribed in [9]. Note, the first cepstral coefficient,
c0 is arbitrarily fixed to 0 because it simply adds a
constant gain factor across frequency that does not
change the spectral shape. After resynthesis, the en-
ergy of pre-enhanced signal is scaled such that the
global signal energy remains unchanged before and
after spectral modification. The result is the modi-
fied signal, x̂, that will be transmitted into the noisy
environment.

The SSN and BMN maskers were added sepa-
rately to the four speech types at three SNRs: −3,
−6 and −9 dB. The target utterances were mixed
with the masker after the modification mechanism
and energy renormalisation.

To train acoustic speech models, a 17,000 utter-
ance training set was provided containing 500 ut-
terances of each of the 34 Grid speakers. We con-
struct phoneme-level HMMs. The number of acous-
tic phoneme models K is 39. Each phone is mod-
elled using a 3-state HMM with each state mod-
elled as an 7-component diagonal covariance GMM.
We first train a speaker-independent (SI) model from
the full 17,000 utterances training set. Then we de-
rived a speaker-dependent (SD) model for each of
the 34 speakers by running further parameter re-
estimations using just the target talker training data.

The four speech types namely: ORG, TVGP-
DRC, TVDIS-DRC, and SSDRC, were tested in 3
SNRs conditions of the 2 maskers using a total of
19,584 stimuli (4 speech types × 816 utterances
(34 speakers × 24 utterances) × 6 noise conditions
(2 maskers × 3 SNRs)) divided into independent

Figure 1: The average percentage of utterances
in which the letters and digits were identified cor-
rectly across listeners as a function of SNR across
maskers.
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blocks of 136. The independent block was drawn
at random, without replacement in which a single
subject would hear 34 utterances from each speech
types into 6 blocks. The subjects were assigned into
blocks in which:

1. each subject heard one block of 136 (34 utter-
ances × 4 speech types) utterances in each of
the 6 noise conditions;

2. no subject heard the same utterance twice;
3. each noise condition was heard by the same

number of subject.
Subjects were tested individually in an

acoustically-isolated booth. Stimuli were pre-
sented once only. The task was to identify the letter
and digit spoken and type the heard keywords. Once
a participant had typed a response, the subsequent
stimulus was presented automatically. Null re-
sponses were not permitted. The test was completed
on average in 50-60 minutes.

4. RESULTS

In general, performance across listeners was reason-
ably consistent, so only the mean of the actual iden-
tification rates with standard errors averaged across
listeners as a function of SNR in the two maskers
and the four speech types are plotted in Figure 1. It is
evident that, for all modifications, the intelligibility
of modified speech signals was substantially higher
than that of the original corrupted speech (ORG)
across all SNRs for both maskers.

A two-way repeated measure ANOVA with
two within-subjects factors (modification type and



Table 1: p-values for comparing intelligibility scores between systems across maskers.

Masker Methods ORG TVDIS-DRC SSDRC TVGP-DRC
BMN ORG - 0.111 0.145 0.020

TVDIS-DRC 0.111 - 0.033 0.091
SSDRC 0.145 0.033 - 0.124
TVGP-DRC 0.020 0.091 0.124 -

SSN ORG - 0.182 0.089 0.098
TVDIS-DRC 0.182 - 0.092 0.084
SSDRC 0.089 0.092 - 0.009
TVGP-DRC 0.098 0.084 0.009 -

masker type) on identification rates indicated sta-
tistically significant effects of modification type
(F(3,15) = 21.5, p < 0.001), and the SNR level
across maskers (F(5,15) = 22.7, p < 0.001) on the
actual intelligibility of speech in noise. This sug-
gests that the effect of modification strategies var-
ied across SNR and were significantly different from
ORG for each masker type.

A post hoc test according to Fisher’s LSD (α =
0.05), computed separately for each masker type
across the SNR level using ANOVAs with the single
factor of modification type, indicated several signif-
icant differences between the different experimen-
tal conditions. The p-values can be found in Ta-
ble 1. Some p-values appear to be non-significant
(e.g. 0.182) due to a very high variance.

The TVDIS-DRC method outperformed all other
speech types across SNRs level in BMN. Addition-
ally, the intelligibility gains were roughly the same
for the TVGP-DRC and SSDRC. In the SSN masker
condition, however, the TVDIS-DRC and SSDRC
had a similar pattern of increase at −9 and −6
dB SNR, but the SSDRC (85%) outperformed the
TVDIS-DRC (72%) at higher level of SNR. The
lowest intelligibility gains were obtained by TVGP-
DRC in both maskers and was noticeable in the SSN
masker at all level of SNRs.

5. DISCUSSION

All speech types were preprocessed by different
spectral modification methods and then by the
same time-domain modification, namely the DRC
method. In our evaluation, in line with the large
scale evaluation in [7, 8], we found that combing
the time-domain modification with the time-varying
spectral modification resulted in higher intelligibil-
ity gain. We attribute the higher gain of intelli-
gibility obtained by TVDIS-DRC to using a better
intelligibility-optimisation method that optimised a
phoneme-level discriminative microscopic intelligi-

bility. These findings suggested that a significant
gain can be achieved by first defining better objec-
tive intelligibility metric, and second by combing
time-domain modification method.

One limitation of the system is the lack of consis-
tency in the findings across the SNRs which might
be associated to the optimisation algorithm. Al-
though the the Nelder-Mead algorithm is appropri-
ate for finding a better solution for the unconstrained
problem, it estimates a local maxima based on the
current estimates of the simplex. The size and posi-
tion of the simplex is changing within each alteration
of the optimisation which might not alway guarantee
the optimal local maxima.

6. CONCLUSION

In this paper, we set out to develop an optimisa-
tion approach to near-end intelligibility enhance-
ment which works by exploiting a priori knowledge
of a speaker and the noise environment to increase
the intelligibility of speech in noise. We automat-
ically modified the speech signal according to the
environmental noise by maximising the intelligibil-
ity estimate without changing the energy level of
speech. We proposed a time-varying spectral shap-
ing, and performed the optimisation on a segment-
by-segment basis. Results showed that combin-
ing this system with a time-domain noise indepen-
dent method (i.e. dynamic range compression) im-
proved intelligibility particularly in non-stationary
noise compared to the state-of-the-art system.
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