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ABSTRACT

Articulation-to-speech (ATS) synthesis has recently
shown the potential for silent speech interfaces
(SSIs). SSIs are devices for assisting the oral com-
munication for individuals who have lost their voice
by mapping their articulatory movement to audible
speech. Electromagnetic Articulograph (EMA) is
one of the current articulator motion tracking tech-
nologies in SSI, which captures the movement of
flesh points on articulators. Understanding how well
different individual flesh points contribute to ATS
performance may help optimize the SSI setup. To
our knowledge, this study is the first to explore the
individual flesh point’s contribution to ATS, where
we compared ATS performance using EMA data of
different flesh points combinations with a deep neu-
ral network (DNN)-based ATS model. Experimental
results indicated that more flesh points lead to higher
performance generally. However, our perception-
based evaluation may suggest the unnecessity of
more than one tongue (tip) flesh point for ATS.

Keywords: Articulation-to-speech, deep neural net-
work, silent speech interface.

1. INTRODUCTION

Articulatory-to-speech (ATS) [1, 2, 3, 4] synthe-
sis generates speech from articulatory information
without textual information. Textual and linguistic
analyses of input are not required in ATS, there-
fore ATS is suitable for a real-time silent speech
interface (SSI). Silent speech interfaces (SSIs) are
systems enabling speech communication when au-
dible acoustic signal is unavailable [5], which have
the potential of recovering speaker’s own voice for
people who are unable to produce speech sounds
but can still articulate. A variety of sensing tech-
nologies have been used to capture articulatory
movements including electromagnetic articulogra-
phy (EMA) [6], ultrasound [7], and recently pro-

posed permanent magnet articulography (PMA) [8,
2]. Especially, a new PMA-based device was pro-
posed [9] which captures only tongue tip, and lips
motion, and it has been validated for silent speech
interface usage [9].

In order to optimize the performance of ATS and
utilize articulatory data effectively, it is important
to investigate the performance of individual articu-
latory flesh point for ATS. This study is beneficial to
both speech science and technology. Scientifically,
speech production is one of the most complex and
rapid motor behaviors and involves a precise coor-
dination of over 100 laryngeal, orofacial and res-
piratory muscles [10]. Exploring the performance
of articulators in speech synthesis would help peo-
ple understand the differences among articulators in
speech production [11]. Technologically, this study
will be helpful for applications like ATS and silent
speech recognition (SSR). In addition, this study can
be a reference during articulatory data collection and
processing for ATS application. It could help people
choose flesh point location during EMA data collec-
tion, and for image-based articulatory data like ul-
trasound and MRI, it could be a reference of flesh
points tracking and image feature extraction.

Previous studies [12, 13] explore the performance
of flesh points on articulators in silent speech recog-
nition (SSR) [14] and determined an optimal set of
flesh points (tongue tip, tongue back, upper lip and
lower lip) for SSR. However, speech recognition es-
sentially is a classification process with context in-
formation or language model applied. On the other
hand, articulation-to-speech (ATS) synthesis based
on statistical parameters speech synthesis (SPSS)
[15] is a regression procedure which predicts numer-
ical acoustic features from articulatory information.
Compared to SSR, ATS is more sensitive to the ar-
ticulatory input data. Therefore, the optimal sets of
flesh points of SSR can only be used as a reference
for ATS study rather than a conclusion.

In this study, we investigated the ATS perfor-



Figure 1: Sensor locations of EMA data in mngu0
(The figure is adapted from [16]).

mances of six flesh points on articulators: tongue
tip (TT), tongue body (TB), tongue dorsum (TD),
upper lip (UL), lower lip (LL) and jaw. The synthe-
sized speech utterances were evaluated objectively
by the prediction accuracies of acoustic features. Af-
ter that, a subjective testing was conducted to mea-
sure the speech intelligibility rate of the conven-
tional TT, TB, UL and LL set and the new TT, UL
and LL flesh point set proposed in [9]. A thorough
discussion was made based on the results.

2. DATASET

The mngu0 dataset is a corpus of articulatory data
of different forms acquired from one male British
English speaker [16]. In this paper, we use the EMA
subset [16] of mngu0 which consists of audio and
EMA data of 1,354 sentences recorded by Carstens
AG500 EMA [17]. The total length of the speech
data is about 67 mins [16].

The raw EMA data of mngu0 dataset tracks 12
sensor coils in 3D space with two angles of rotation
[16]. In this study, we use two-dimensional move-
ment tracks of six sensors (Figure 1): upper lip (UL),
lower lip (LL), lower incisor (JAW), tongue tip (TT),
tongue body (TB), tongue dorsum (TD) extracted
from raw EMA data. The 2D movement includes
vertical and front-back directions. The movement
of head was subtracted from these sensors’ motion
data to obtain head-independent articulator move-
ment. The sampling rate of EMA data is 200Hz. The
audio data was recorded synchronously with EMA
data. The sampling rate of audio data is 16 kHz [16].

3. METHODS

3.1. Articulation-to-speech Synthesis Using Deep
Neural Network

In this study, we adopted DNN to map acoustic fea-
tures from articulatory data. The input of ATS in-
cludes sensor position vector in y (front-back) and

z (up-down) directions; the outputs are acoustic fea-
tures which are used for synthesizing speech by the
WORLD voice encoder [18].

The input of ATS is 2-dimensional (front-back
and up-down) motion vector of individual sen-
sors attached to the flesh point on articulators
(tongue, lips and jaw) or their different combina-
tions. In addition, both input articulatory frames
and output acoustic feature frames were concate-
nated with their first and second order of deriva-
tives as the input and output of neural network
models. The predicted acoustic features include:
mel-cepstral coefficients (MCCs) [19], band aperi-
odicities (BAP)[20], logarithm of fundamental fre-
quencies (log-F0) and voiced/unvoiced (V/UV) la-
bel. Accordingly, the objective evaluation of ex-
perimental results is the prediction accuracies of
these features, which are mel-coefficient distortion
(MCD), band aperiodicities (BAP) distortion, root
mean square error of fundamental frequencies (F0-
RMSE), and voiced/unvoiced (V/UV) error rate.

3.2. Experimental Setup

The mngu0 dataset provides 1,354 sentences of
speech data with both audio and EMA data. The
whole dataset was separated to training, develop-
ment and testing set with 1,226 , 63 and 65 sentences
respectively. The DNN used in this study has six
hidden layers with 512 nodes. Learning rate was set
to 0.003, training batch size and number of epoch
were 128 and 25 respectively. We used stochastic
gradient descent (SGD) optimizer for training. The
experimental parameters are shown in table 1.

In this study, firstly we validated each of the six
sensors in DNN-ATS experiment to see their indi-
vidual performances. After that, they were com-
bined in different sets to explore their performance
when working together with others. For future con-
venience, we use expressions like [UL, LL, TT, TB,
TD] to denote a flesh point set on the articulatory

Table 1: Experimental setup.
Acoustic Feature 187-dim. vectors
Mel-Cepstral Coefficients (MCCs) (60-dim. vectors) +

∆ + ∆∆ (180-dim.)
Band Aperiodicities (BAPs) (1-dim. vectors) + ∆

+ ∆∆(3-dim.)
Fundamental Frequency on log scale (log-f0) (1-dim. vectors) + ∆

+ ∆∆ (3-dim.)
Voiced/Unvoiced (V/UV) label (1-dim.)
Sampling rate 16000 Hz
Windows length 25 ms
Articulatory Feature 36-dim. vectors
articulatory movement (6 sensors) (12-dim. vectors) + ∆

+ ∆∆ (36-dim.)
Common
Frame rate 5 ms
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Figure 2: Results of Individual Flesh Points and Combination of Lips and Jaw.

flesh points in the square bracket.
Previous studies [12, 13] successfully proved that

[UL, LL, TT, TD] consist an optimal flesh for silent
speech recognition, which even outperformed [UL,
LL, TT, TB, TD] [13]. Therefore, in this study we
validated lips, jaw and lips + jaw combined with all
combinations of TT, TB and TD in DNN-ATS.

4. RESULTS AND DISCUSSION

4.1. Individual Flesh Point in ATS

Figure 2 gives the performance of each individual
flesh point and the combination of jaw and lips. Here
the lower numbers indicate better performance. In
Figure 2, for single flesh points, we can see that
tongue tip (TT) outperform others in MCD and BAP
predictions, LL is the second, whereas upper lip
(UL) and tongue dorsum (TD) perform least helpful
in all evaluations. Except for in F0-RMSE, lower lip
(LL) outperforms other flesh points while jaw is the
second. It is important to note that F0 and V/UV
are less affected by articulation compared to MCD
and BAP. Generally it can be concluded that the per-
formances of six sensors in descending order are:
tongue tip (TT), lower lip (LL), tongue body (TB),
jaw, tongue dorsum (TD), and upper lip (UL).

4.2. Flesh Point Sets in ATS

The performance of lips, jaw, and lips + jaw com-
bined with tongue sensors (TT, TB, TD) are shown

from Table 2 to Table 5. In table 2 and table 3,
MCD and BAP strictly follow the trends that [UL,
LL, Jaw] < lips < Jaw, and [TT, TB, TD] < [TT,
TB] < [TT, TD] < [TB, TD]. In table 4 and 5, F0-
RMSE and V/UV shows similar trends in MCD and
BAP except for [UL, LL, Jaw, TT, TB] outperformed
all six flesh points in both F0-RMSE and V/UV; in
addition [Jaw, TT, TD] outperformed [Jaw, TT, TB]
in F0-RMSE. Since F0 and V/UV have less relation-
ship to articulation, it can be concluded that gener-
ally more articulatory flesh points’ movement will
generate better performance in ATS. However, from
table 2 and 3, it also can be observed that all six
points outperform [UL, LL, Jaw, TT, TB] slightly in
MCD and BAP by 0.002 dB and 0.001 dB respec-
tively whereas [UL, LL, Jaw, TT, TB] outperform
all six points in both F0 and V/UV predictions.

This finding is different to the optimal flesh point
set found in silent speech recognition(SSR): [UL,
LL, TT, TD] which got rid of TB rather than TD
[13]. As mentioned, SSR essentially is a classifi-
cation process, whereas ATS in this study is frame
by frame regression. Therefore, ATS is more sensi-
tive to the articulatory data, and ATS would benefit
more from the flesh points which affect speech pro-
duction more. Based on our result of flesh points
on tongue, the closer a flesh point to TT, the bet-
ter it will perform. Therefore, TD is less impor-
tant in ATS than in SSR whereas TB is more impor-
tant in ATS. Another explanation of this is, based on
our computation on all mngu0 EMA samples, the



Table 2: MCD (dB) of Flesh Point Sets.

Jaw Lips Lips + Jaw

TT + TB + TD 5.644 5.422 5.377
TT + TB 5.758 5.489 5.379
TT + TD 5.826 5.556 5.439
TB + TD 5.933 5.715 5.533

Table 3: BAP (dB) of Flesh Point Sets.
Jaw Lips Lips + Jaw

TT + TB + TD 0.182 0.178 0.178
TT + TB 0.186 0.180 0.179
TT + TD 0.186 0.180 0.179
TB + TD 0.192 0.188 0.183

Table 4: F0-RMSE (Hz) of Flesh Point Sets.

Jaw Lips Lips + Jaw

TT + TB + TD 10.860 10.520 10.491
TT + TB 11.093 10.630 10.431
TT + TD 10.970 10.862 10.664
TB + TD 11.184 10.839 10.686

Table 5: V/UV (%) of Flesh Point Sets.

Jaw Lips Lips + Jaw

TT + TB + TD 19.117 18.287 17.657
TT + TB 20.117 18.478 17.640
TT + TD 20.025 18.885 17.875
TB + TD 21.444 20.255 19.030

Euclidian distances between TT and TB, TB and
TD are about 1.76 cm and 1.60 cm respectively.
SSR studies [13] used the MOCHA-TIMIT database
[21]. In MOCHA-TIMIT, TB was 2-3 cm from TT;
TD was 2-3 cm from TB [22]. Therefore the dis-
tance between TD and TT in mngu0 is close to dis-
tance between TB and TT in MOCHA-TIMIT. Al-
though there are physiological variations between
the subjects, this could be considered as a possible
explanation for the different performance of tongue
flesh points find in SSR and ATS.

Another finding was that the jaw performed bet-
ter when predicting F0 than predicting MCC and
BAP. A possible explanation of this is that tongue
body back movement may slightly affect vibration
of vocal folds. Jaw movement reflects the movement
of people opening and shutting their mouth, these
movements squeeze and lose the tongue body back
which may affect the vibration of vocal folds. This
may explain why jaw performed better in predicting
F0 than predicting MCD and BAP.

Table 6: Word Accuracy (%) by Listeners.

Lips + TT Lips + TT + TB

Listener 1 94.6 92.4
Listener 2 86.9 93.5
Listener 3 95.6 97.1
Listener 4 88.1 88.3
Average 91.3 92.8

4.3. Subjective Testing

A listening test was conducted by four native Ameri-
can English speakers to evaluate the speech intelligi-
bility of ATS using flesh points combination of [TT,
UL, LL] and [TT, TB, UL, LL] (Table 6), the former
is used in the newly proposed articulatory move-
ment capture device mentioned [9], and the latter is a
popular flesh points set for silent speech recognition
[12, 13, 14]. The average word accuracies of four
listeners are 91.3% for [TT, UL, LL], and 92.8% for
[TT, TB, UL, LL]. Therefore, given the slight advan-
tage of using [TT, TB, UL, LL] flesh point and the
technical difficulties of attaching one more sensor on
tongue dorsum, [TT, UL, LL] might be overall more
suitable for ATS application than [TT, TB, UL, LL].

5. CONCLUSIONS

In this study, we first compared individual flesh
points for ATS. The results indicated that tongue
tip and lower lip are the most helpful flesh points.
When combining multiple flesh points, generally
more flesh points generated better results. How-
ever, the performance of the flesh point set with-
out tongue dorsum but with all other points is only
slightly worse than using all six points in predicting
MCC and BAP; at the same time it outperforms all
six points in predicting F0 and V/UV. Given this re-
sult and the difficulties of attaching one more sensor
on the tongue, the flesh point set: upper lip, lower
lip, jaw, tongue tip, tongue body could be considered
as a helpful sensor set in ATS. In addition, the flesh
point set (tongue tip and lips) used by the newly pro-
posed device has been compared subjectively to the
conventional set. The results suggest that tongue tip
and lips might be more suitable than multiple tongue
(tip) flesh points for ATS.
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