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ABSTRACT

Articulation-to-speech (ATS) synthesis is to directly
synthesize speech from articulatory information,
which does not require textual input. ATS has re-
cently shown the potential for assistive technologies
such as silent speech interfaces (SSIs). ATS is the-
oretically language-independent, since there is no
dictionary involved. However, to our knowledge,
there is no data-based experiment has been con-
ducted to answer this question, due to lack of the
multi-language, articulatory movement data from
the same speakers. In this study, we conducted
speaker-dependent ATS experiments using data col-
lected from bilingual speakers, who speak two of
the three languages: English, Spanish, and Korean.
The experimental results indicated the performance
was degraded if ATS was trained with a language
and tested with another language. Interestingly, we
observed the performance of ATS for one language
could be improved if some samples of another lan-
guage were added to the training dataset.
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1. INTRODUCTION

Silent speech interfaces (SSIs) [1] are devices to fa-
cilitate speech communication for individuals that
are unable to properly vocalize speech sounds. For
individuals like laryngectomees (people who have
their larynx removed due to the treatment of la-
ryngeal cancer), SSIs provide a way of recover-
ing normal communication. SSIs capture the bio-
signals with different technologies such as electro-
magnetic articulograph (EMA) [2], permanent mag-
netic articulography (PMA) [3, 4, 5, 6], ultrasound
[7], non-audible murmur (NAM) [8, 9]. Based on
the model is directly or indirectly mapping from
articulatory bio-signals to speech, the software de-
sign of SSIs typically falls under two major cate-

gories. The indirect-mapping design (recognition-
and-synthesis approach) includes two steps: a silent
speech recognition (SSR) [10, 11, 12, 13] stage for
converting non-audio articulatory signals to text, and
a text-to-speech (TTS) [14, 15] synthesis stage for
converting text into speech. The direct-mapping
SSI design is articulation-to-speech (ATS) synthe-
sis [3, 4, 5, 7, 16, 17], which directly maps articula-
tory information to speech (Figure 1). Compared to
the indirect-mapping design, ATS-based SSI has the
benefit of real-time and easy implementation. In ad-
dition, ATS is independent of textual input whereas
the performance of the indirect-mapping SSI highly
depends on the accuracy of speech recognition. Be-
cause of these advantages, ATS has recently gained
increasing attention from researchers in SSI.

Another benefit of direct-mapping method (ATS)
is the reduced level of language dependency that is
inherent to their design. Whereas indirect-mapping
SSI method utilizes SSR systems that are heavily
language dependent, no part of a direct ATS sys-
tem that is explicitly language dependent. This does
not mean we should expect direct ATS systems to
be completely language independent. While we
hypothesize that the mapping between articulatory
movements and the sounds that they produce is in-
dependent of language, the subset of common mo-
tions pertaining to a specific language is not. This
means that if an ATS system is asked to synthesize
a phoneme that doesn’t exist in the language it is
trained on, that system is less likely to produce the
appropriate speech sound.

While the idea that direct ATS systems are
language-independent has been suggested in the lit-
erature [18]. It has not been investigated due to lack
of multilingual articulatory data from same speak-
ers. In this paper, we utilized data from two bilingual
speakers (one English/Spanish speaker, and one En-
glish/Korean speaker) to develop ATS systems and
examined the degree to which these systems are ca-
pable of generalizing to new languages using little or
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Figure 1: Articulation-to-speech Synthesis Model.
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Figure 2: Sensor Locations.

no data from the language to be synthesized. Addi-
tionally, by examining two different language pairs,
English-Spanish and English-Korean, we hope to
identify the degree to which phonetic differences be-
tween languages inhibit the ability of ATS systems
to generalize to new languages.

2. DATA COLLECTION

Electromagnetic articulograph (EMA) data from
two speakers was used for this study. One female
speaker who speaks Spanish and English, and one
male speaker who speaks Korean and English partic-
ipated in the data collection sessions. Each subject
repeated a sequence of 132 phrases in each of two
languages he or she speaks at their habitual speaking
rates. 264 phrases were recorded from each subject.
The 132 phrases were selected from phrases which
are frequently spoken by the users of augmentative
and alternative communication (AAC) devices [19].

2.1. Tongue motion tracking device

The EMA and audio data were collected using
the Wave system (Northern Digital Inc., Waterloo,
Canada). During data recording, the movement of
articulators were captured by four sensors attached
(two on the tongue and two on the lips). One ad-
ditional sensor was attached to the forehead for the
correction. Two tongue sensors were attached to the
tongue tip (TT, 5-10 mm to tongue apex) and tongue
back (TB, 20-30mm back from TT) with dental glue
(Peri-Acry1 90, GluStitch). Two lip sensors were
attached to the middle of upper lip (UL) and lower
lip (LL) with tapes. The locations of the sensors are

shown in Figure 2. The sampling rate of EMA data
is 100Hz. The spatial precision of movement track-
ing is about 0.5mm [20]. Before the data collec-
tion, a three-minute training session was conducted
to help participants adapt to the speaker with sensors
on their tongue and lips. For each subject, the data
collection was completed in one session to ensure
that sensor locations are identical for the different
language recordings.

To obtain head-independent articulatory move-
ment, first the head motion collected from the fore-
head sensor was subtracted from the motion of ar-
ticulator sensors. The derived Cartesian coordinates
system is shown in Figure 2: x is lateral direction,
y is superior-inferior direction, and z is anterior-
posterior direction. All of the EMA data were up-
sampled to 200 Hz using a spline interpolation pro-
cedure to match the 5 milliseconds frame rate of
acoustic features.A three-minute adaptation session
was conducted to help participants adapt to speaking
with sensors on their tongue and lips

Table 1: Experimental setup.
Acoustic Feature 187-dim. vectors
Mel-Cepstral Coefficients (MCCs) (60-dim. vectors) +

∆ + ∆∆ (180-dim.)
Band Aperiodicities (BAPs) (1-dim. vectors) + ∆

+ ∆∆(3-dim.)
Fundamental Frequency
on log scale (log-F0) (1-dim. vectors) + ∆

+ ∆∆ (3-dim.)
Voiced/Unvoiced (V/UV) label (1-dim.)
Sampling rate 22050 Hz
Windows length 25 ms
Articulatory Feature 36-dim. vectors
articulatory movement (4 sensors) (12-dim. vectors) + ∆

+ ∆∆ (36-dim.)
Common
Frame rate 5 ms

DNN Topology
Input Articulatory movement:

36-dim.
3D motion of 4 sensors
+ ∆ + ∆∆

Output. 187-dim. acoustic feature
No. of nodes each hidden layer 512
Depth 6-depth hidden layers
Learning rate 0.0035
Batch size 128
Epoch 25
Optimizer SGD
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Figure 3: Results of Experiment Session 1.

3. METHODS

3.1. Articulation-to-speech synthesis

In this study, we implemented an ATS system which
uses deep neural network (DNN) to predict acoustic
features from the EMA data (Figure 1). The input
of DNN is the articulation sensor data concatenated
with its first and second order derivative. The out-
put of DNN is the concatenation of acoustic features
to be fed to a voice encoder (Vocoder) for speech
synthesis. The acoustic features used include: mel-
cepstral coefficients (MCCs) [21], band aperiodici-
ties (BAPs) [22], logarithm of fundamental frequen-
cies (Log-F0s), and a voiced/unvoiced flag. These
acoustic features are sent to the Vocoder for syn-
thesizing speech. The measurement of ATS perfor-
mance was the accuracies of acoustic feature predic-
tion. The Vocoder used in this study is the World
Vocoder [23]. The detailed experimental setup is
shown in Table 1.

3.2. Experimental Setup

As mentioned, 132 sentences were recorded for each
of two languages spoken by each of subject. Each
132-sentence dataset was separated as a training set
of 100 sentences, a validation set of 16 sentences
and a testing set of 16 sentences. We conducted two
major experiment sessions in this study. In the first
session, firstly we conducted speaker and language-
dependent ATS experiments as the baseline, which
means both training and validating data are from
same speakers and for same languages. Then we

tested the trained ATS models with a different lan-
guage from same speakers. This goal of this session
is to gauge how well single-language ATS systems
can generalize to new languages for two different
language pairs. In the second session, we used the
mixtures of two languages as training data and tested
the model on each language. In this experiment,
we keep the total number of sentences in training
100, and vary what percentage of the training data is
drawn from each language. The goal of this exper-
iment is to measure the degree to any performance
degradation related to the language-dependency of
the ATS system can be mitigated by the inclusion of
some portion of in-language training data.

4. RESULTS AND DISCUSSIONS

The results of the first experiment session are pre-
sented in Figure 3. Here the lower numbers indicate
better performance of ATS. The green color repre-
sents the English-Korean speaker, and the yellow
color represents the English-Spanish speaker. We
can see that all of four objective measurements of
ATS: mel-cepstral distortion (MCD), band aperiod-
icities distortion (BAP), RMSE of fundamental fre-
quency (F0-RMSE) and voiced/unvoiced (V/UV) er-
ror rate were increased when the ATS was applied
to testing data of different languages. Except for
the F0-RMSE was decreased when the ATS trained
on English was tested on Spanish. But since F0 is
less related to articulatory movement, improvement
in F0 estimation does not necessarily indicate a bet-
ter ATS. We still consider the performance of ATS
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Figure 4: Results of Experiment Session 2.

was decreased since both MCD and BAP distortion
were increased.

Moreover, we can observe that English-Korean
ATS and English-Spanish ATS performed differ-
ently. When the ATS trained with English was
tested with Korean, the performance was decreased
significantly (5.37 dB to 7.03 dB in MCD), and
vice versa (5.06 dB to 6.77 dB in MCD). However
for the ATS trained with English was tested with
Spanish, the MCD was only increased by 0.04 dB
(6.04 dB to 6.08 dB), and 0.43 dB MCD was in-
creased when trained with Spanish and tested with
English. These observations indicated that Spanish
has a higher similarity in articulatory patterns to En-
glish than Korean.

Figure 4 shows the mel-cepstral distortions
(MCDs) of the second session which is testing ATS
trained with the mixtures of two languages with both
two languages. Here we present MCD only because
it is more correlated to articulatory movement than
other acoustic features. The x-axis is the number of
the training sentences in testing language. For ex-
ample, for the Testing on English curves in figures,
90 on x-axis means the ATS was trained with dataset
contains 90 English sentences, and 10 the other lan-
guage sentences.

As can be seen in Figure 4(a), for Korean ATS,
the best performance was achieved by using 100%
Korean sentences as training data. However, for En-
glish the best performance was achieved by using
80% English and 20% Korean. In Figure 4(b), the
best performance of Spanish was achieved by us-
ing 80% Spanish and 20% English. For English, it
is 60% English and 40% Spanish. These numbers
indicated that there are similar articulatory patterns
between Korean and English, Spanish and English
since each of them has improved the performance of
ATS for another language or been improved perfor-
mance of ATS by another language.

5. CONCLUSION AND FUTURE WORK

This study investigated the performance of ATS
systems when synthesizing speech from languages
other than the primary language of the training data.
The experiments conducted in this paper yielded
three main findings. First, we observe a reduction in
the performance of ATS systems when synthesizing
languages outside of the training set. Second, we
found that this reduction in performance is heavily
dependent on the degree of similarity between the
language being synthesized and the language used
for training. While there exists a large performance
loss when using an English-trained ATS system to
synthesize Korean, the performance loss when us-
ing an English-trained system to synthesize Spanish
was found to be relatively minor. Third, it can be
observed that at below a certain proportion of inclu-
sion of the second language the results flatten out,
with the only difference is beyond that point being
attributable to experimental fluctuations.

Although the results of the experiments con-
ducted in this paper are largely in agreement with
our prior hypotheses, the reliability of these findings
is inherently limited by the data size. Because the
data used was collected from only two participants,
our findings are hard to generalize to other speakers.
Furthermore, as the systems examined in this paper
are all speaker-dependent, it remains an open ques-
tion whether or not these findings will be consistent
with those for speaker independent systems. Future
work will focus on expanding this study with more
speakers.
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