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ABSTRACT 

 
This study examines the sensitivity of formant-based 
semi-automatic speaker recognition systems to 
feature extraction settings and channel mismatch. A 
total of 200 systems were tested, varying LPC order 
and the maximum number of formants tracked across 
four channels: studio quality, landline telephone, and 
two GSM mobile phone samples with different bit-
rates. For each system, calibrated log likelihood ratios 
were computed for 97 speakers using formants 
extracted from 60 seconds of vowel-only material. 
System performance was affected markedly by 
formant settings, with EER ranging from 8% to 37% 
and Cllr ranging from 0.28 to 0.88 in the high quality 
condition. However, some individuals are more 
sensitive to such variation, meaning that system 
performance is entirely dependent on the specific 
speakers tested. This issue is discussed in light of the 
ongoing debate about the validation of methods and 
testing of systems under the conditions of the case. 
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1. INTRODUCTION 

Within the field of forensic voice comparison there is 
a growing trend towards integrating methods from 
speech technology (i.e. automatic speaker 
recognition; ASR) and linguistics and phonetics. 
Historically these fields developed separately, but 
there is now growing evidence that integrated 
approaches can improve overall system performance 
and help us better understand the behaviour of 
systems under different conditions [8,10,13]. This is 
especially important in the context of forensic 
evidence, which must be explained to and understood 
by non-specialist end-users (e.g. juries, police).  

There has been increasing focus on the speaker 
discriminatory potential of semi-automatic speaker 
recognition (SASR) systems, which represent a 
hybrid between ASR and linguistic-phonetic methods 
[11]. SASR involves the extraction of linguistic-
phonetic acoustic features, typically formant 
frequencies (long-term formant distributions; 
LTFDs). Formants are extracted only from the vowel 

material within a sample and so some degree of pre-
processing is required. This contrasts with ASR 
systems that extract features from the entire speech-
active portion of a sample. Modelling, scoring and 
evaluation in SASR are performed automatically. 

With good quality, or at least matched-quality 
materials, SASR systems have been shown to 
perform well, with studies reporting equal error rates 
(EER) as low as 3-4% [3,9]. [14] provide the first 
systematic analysis of channel mismatch on LTFD-
based SASR systems. They examined system 
performance and the sensitivity of log likelihood 
ratios (LLRs) for individual speakers to channel 
variation. Predictably, the best performance was 
found using high quality studio samples, producing 
an EER of 10% and a log LR cost (Cllr; [4]) of 0.37. 
Performance degraded considerably with mismatched 
recordings, with the comparison between high quality 
suspect samples and low bit-rate GSM mobile phone 
offender samples producing an EER of 32% and a Cllr 
of 0.83. Despite variation in system performance, 
LLRs for some speakers were found to be stable 
across conditions, while other speakers were much 
more sensitive to channel mismatch. The only 
predictor of sensitivity was mean F3, such that 
speakers with high mean F3 produced more variable 
LLRs. It was suggested in [14] that this may be due 
to measurement error issues.  

Previously, SASR systems have been tested with 
a single configuration of formant extraction settings 
which are applied to all speakers across all conditions, 
with little or no post-processing applied to deal with 
measurement errors. However, it is well known that 
formant measurements are sensitive to the settings 
and software used [12] and to channel variation [6], 
and that caution should be exercised over using 
unchecked data [7]. The present study builds on [14] 
to examine the effects of formants settings (LPC 
order and the number of formants tracked) on both the 
validity of SASR systems and the LLRs produced for 
individual speakers. This study uses the same 
materials across the same conditions as [14]: high 
quality studio samples, landline telephone samples, 
and two GSM mobile phone samples with high and 
low bit-rates. Output is compared in terms of overall 
system performance, as well as validity metrics for 
individual speakers.   



2. METHOD 

2.1. Materials 

Analysis was performed using recordings from 97 
male, standard southern British English speakers aged 
18 to 25 from the DyViS corpus [16]. Participants 
were recorded in a mock police interview (Task1) and 
a telephone conversation with an accomplice (Task2). 
High quality, studio recordings of Task1 were used as 
suspect samples. Task2 was used as the offender 
sample. Four versions of Task2 were tested: 

(1) High quality (HQ): To capture optimal 
performance in matched conditions, the near-
end, studio recordings were used.  

(2) Landline telephone (TEL): These were 
recordings made at the far-end of a landline 
telephone line (downsampled to 8kHz). 

(3) GSM mobile with high bit-rate (MOBHQ): 3G 
GSM samples were created by down-
sampling to 8kHz and bandpass filtering 
between 300Hz and 3400Hz. The GSM 
codec was then applied using the AMR 
Speech Codec Platform [2], which allows the 
user to specify bit-rate and frame loss 
settings. In the MOBHQ condition, a fixed bit-
rate of 12.2kb/s was used. 

(4) GSM mobile with low bit-rate (MOBLQ): The 
same procedures as above were applied, but 
with a fixed bit-rate of 4.75kb/s. 

2.2. Preparation of recordings 

Samples were automatically divided into consonants 
and vowels using stkCV [1]. For each speaker, 60 
seconds of vowel material was used (see [13,14]). 

2.3. Formant extraction 

Formants were extracted from the vowel-only 
samples using a 20ms window with 10ms shift. From 
each frame, the first three formant frequencies and 
bandwidths were extracted using the Snack Sound 
Toolkit [19] with deltas (capturing dynamic frame-to-
frame variation) also appended. Different sets of 
formant data were extracted using different settings: 
based on LPC order (ranging from 12 to 16) and the 
number of formants tracked (3 or 4). 

2.3. Testing and evaluation 

Four transmission conditions were tested in this 
study: (i) HQ-HQ, (ii) HQ-TEL, (iii) HQ-MOBHQ, 
and (iv) HQ-MOBLQ. Within each condition, three 
variables relating to formant settings were analysed: 
suspect LPC order, offender LPC order, and the 
number of formants tracked. This produced a total of 

200 systems (50 systems in each condition) – the term 
system here is used to describe a configuration of 
settings, rather than the more specific use of the term 
to describe an ASR system. 

For each system, cross-validated same- (SS; 97) 
and different-speaker (DS; 4,656) scores were 
computed using GMM-UBM [16] with MAP 
adaptation of means, variances, and weights. Cross-
validation was performed by retraining the UBM for 
each comparison, excluding data from the suspect and 
offender being compared each time. GMMs were 
fitted using eight Gaussians (based on pre-testing). 
Scores were then converted to LLRs using cross-
validated logistic regression [5]. This involved 
calibrating each score individually, training the 
logistic regression model on scores from comparisons 
that did not involve the suspect or offender. This 
produced parallel sets of calibrated LLRs that were 
used to calculate the EER and Cllr for each system. 
For both metrics, the closer the value is to zero the 
better the performance. 

The effects of channel and formant settings were 
also assessed in terms of individual speakers. Within 
each transmission condition, the SS and DS LLRs 
from comparisons involving each speaker as suspect 
or offender were extracted and used to calculate a 
speaker-specific EER and Cllr – with 50 systems in 
each condition, each speaker produced 50 SS LLRs 
and 4,800 DS LLRs. Speaker-specific validity is used 
here as a measure of a speaker’s sensitivity to changes 
in formant settings (i.e. the higher the EER or Cllr the 
more sensitive a speaker is to changing formant 
settings). Importantly, the speaker-specific validity 
metrics also capture the inherent discriminatory 
potential of a speaker, and this interacts with their 
sensitivity to formant settings. To account for this, 
speaker-specific validity is examined in light of the 
LLRs produced by individuals in the best performing 
condition (in this case, HQ-HQ, Suspect LPC: 12, 
Offender LPC: 12, tracking 3 formants). 

3. RESULTS 

Figure 1 displays two sets of system validity results. 
These were chosen because they were the conditions 
that produced the most and least variability in terms 
of EER and Cllr. Figures showing the performance of 
all 200 systems can be found here: 
[https://vincehughes.files.wordpress.com/2019/03/all
systems.pdf]. The greatest variability was found in 
the HQ-HQ condition using a suspect LPC order of 
12 (which is, importantly, the default in Snack), with 
EERs ranging from 7.9% to 32.8% and Cllrs ranging 
from 0.28 to 0.84. This, more than any other 
condition, highlights the potential magnitude of the 
effects of formant settings on SASR performance. 



While overall speaker discriminatory power was 
generally much lower in the mismatched conditions 
(HQ-TEL, HQ-MOBHQ, and HQ-MOBLQ), system 
validity was more robust against changes in formant 
settings. As shown in Figure 1(b), in the HQ-MOBLQ 
condition, EERs ranged from 29.2% to 33.1% and 
Cllrs ranged from 0.82 to 0.86. This is likely due to the 
fact that there is much less potential for variability in 
system performance with degraded recordings that 
inherently produce poorer systems. Even with 
accurate formant measurements the HQ-MOBLQ 
condition will never produce EERs as low as the 7.9% 
in the HQ-HQ condition.  

 
Figure 1: System validity (EER and Cllr) in the most 
(top: HQ-HQ, Suspect LPC = 12) and least (bottom: 
HQ-MOBLQ, Suspect LPC = 16) variable conditions 

 

 
No systematic patterns were found in terms of the 

effects on performance of LPC order or the number 
of formants tracked. For some combinations of 
suspect and offender LPC orders, tracking three 
formants consistently outperformed tracking four 
formants (e.g. suspect LPC order of 13 in the HQ-HQ 
condition), while for other combinations four 

formants were better (e.g. suspect LPC order of 12 in 
the HQ-MOBLQ condition). This suggests that 
changing formant settings does not have a uniform 
effect on the system as a whole. Rather, different 
settings are better for certain speakers.  
 

Figure 2: Speaker-specific system validity (EER 
and Cllr) in the four transmission conditions (each 
dot represents a single speaker and is calculated 
using their SS and DS LLRs across all settings) 

	
 

Figure 2 shows speaker-specific validity in the 
four transmission conditions. To assess these 
patterns, a Cllr of 1 was used as a threshold to 
determine performance. A system that consistently 
produces LLRs of 0 (i.e. provides no useful speaker 
discriminatory information) will have a Cllr of 1. 
Thus, a Cllr of less than 1 means that a system is 
capturing speaker discriminatory information, while 
a Cllr of more than 1 means very poor performance. It 
is clear from Figure 2 that the proportion of speakers 
producing Cllrs of more than 1 is greater in the 
mismatched conditions (up to 15.46% in the MOBHQ 
condition) compared with the matched, HQ-HQ 
condition (5.15%). Given the results of overall system 
testing, this is likely due to reduced speaker-
discriminatory power in the mismatched conditions, 
rather than greater sensitivity of speakers to changes 
in formant settings. However, a number of speakers 
recurrently produced high Cllrs across conditions. 
Notably, speaker #10 (DyViS code) produced Cllrs 
over 1 in all four conditions, while speakers #32, #44, 
#58, #103, and #111 produced Cllrs over 1 in three of 
the four conditions. Examining these speakers in 
more detail reveals some interesting patterns. For 
some speakers (#32), the high Cllrs are due to the fact 
that they are inherently difficult to match with 
themselves, and to discriminate from others. Other 
speakers (#58, #103, #111) produced strong SS and 
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DS LLRs in the optimal condition and so the high Cllrs 
directly reflect sensitivity to formant settings. These 
are, in a way, the most problematic speakers in terms 
of choosing formant settings, since changes to 
settings have a dramatic effect on their LLRs, leading 
them to produce more high magnitude errors. Finally, 
some speakers (#10, #44) display an interaction 
between discriminatory power and sensitivity to 
formant settings. These speakers generally produce 
average to weak LLRs, but are by no means the worst 
performing speakers in the system. Since their LLRs 
are inherently closer to the threshold, even small 
variation in formants as a result of the settings used 
can have a substantial effect on the proportion and 
magnitude of errors. 

4. DISCUSSION 

4.1. Overall performance 

Our results show that SASR performance is heavily 
dependent on the formant settings used. This is the 
case even, and in fact most notably, in high quality 
conditions where the overall speaker discriminatory 
power is likely to be higher. The results serve as a 
reminder to exercise caution when interpreting the 
performance of an SASR system which has only been 
tested with a single set of settings. At the very least, 
SASR systems should be tested with different settings 
to assess the best configuration for the comparison in 
a case. This would also provide a means of 
understanding the potential range of results the SASR 
system could produce with different settings. 

4.2. The role of the individual in system testing 

The lack of systematic patterns show that individuals 
are not affected equally by changes in formant 
settings across transmission conditions. Some 
individuals are, on the whole, more or less sensitive 
to changes in formant settings. Other individuals are 
likely to be sensitive only to specific changes in 
formant settings. 

The issue of the role of individual speakers within 
a system is important in the context of the wider 
debate about the paradigm shift across forensic 
science and calls for the testing of systems under the 
conditions of the case at trial. Morrison [15] states 
that “the test data must be sufficiently representative 
of the relevant population and sufficiently reflective 
of the speaking styles and recording conditions in the 
case.” It is, of course, useful to know how well your 
system performs generally with such test data. 
However, ultimately, the issue is that the analyst 
needs to know the probability of having made an error 
(i.e. producing a contrary-to-fact LR) for the specific 
suspect and offender in the case, rather than the 

general performance of the system. Using test data of 
the type described by Morrison [15] does not 
necessarily answer this question. 

We would argue that it is more critical to 
understand the behaviour of individual speakers, or 
types of speakers, within the system, and thus be able 
to predict how specific suspect and offender voices 
may perform. This requires knowledge of the factors 
that alter speaker behaviour in a system. Clearly, as 
this study has shown, formant settings are one such 
factor. However, the broader questions of why 
speakers are more or less sensitive to changes in 
formant settings and why this affects speaker 
discrimination are more difficult to answer. It is well 
known, to those who often measure formants 
manually, that some speakers’ formants are much 
harder to track than others. The potential reasons for 
this are likely numerous and complicated. Phonation 
(laryngeal voice quality) is one potential explanation. 
Speakers with habitually non-modal phonation may 
produce more formant errors since they provide a 
poorer fit to the LPC model. However, we found no 
consistent pattern when analysing the voice quality 
profiles (from [18]) of the problematic speakers 
identified at the end of section 3. The variability in 
formant measurements may also be due to filter 
configurations that generate wide bandwidths and, 
thus, less prominent peaks, as well as natural within-
speaker variability in the voice. However, more 
research is required to explore these issues.  

5. CONCLUSIONS 

This study highlights the importance of formant 
settings across different transmission conditions in 
testing SASR systems. The results show that 
individuals are sensitive to these factors to different 
extents, and that this sensitivity interacts with speaker 
discriminatory potential to affect the resulting LLRs. 
The results here are also relevant to the wider 
phonetic community. In line with [7], caution should 
be exercised using automatically generated formant 
data, especially in the context of large-scale, corpus-
based studies that rely on the scale of data to reveal 
subtle effects; e.g. related to predictability. Given our 
findings, we consider it preferable for any phonetic 
study using formant measurements to minimally use 
speaker-specific settings. However, as suggested by 
[12] it may be that vowel-specific settings are also 
necessary. 
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