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ABSTRACT 

 

This experiment assessed the validity of a statistical 

classification method for automated coding of 

sociophonetic variables, in particular the presence vs. 

absence of English non-prevocalic /r/. A random 

forest classifier was trained on 180 acoustic measures 

from 5,355 tokens of /r/ (hand-coded as Present or 

Absent) in a variety of English with variable rhoticity; 

the classifier achieved 87.9% accuracy on training 

data. The classifier was then used to predict the 

probability of /r/ presence in 32,099 additional tokens 

from the same variety. 

Eleven phonetically trained listeners judged 60 

classifier-coded tokens as Present or Absent. 

Judgment results indicated a significant positive 

linear relationship between classifier probability and 

human judgments; classifier probability also 

outperformed individual acoustic measures (e.g., F3 

minimum) in predicting human judgments. These 

results both validate this random forest classifier 

method for automated coding of sociophonetic 

variables and indicate the viability of modelling 

phonetic variation using classifier probability. 

 

Keywords: rhoticity, random forests, speech 
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1. BACKGROUND 

English non-prevocalic /r/ is acoustically complex, 

but the typical approach to understanding variable 

rhoticity in sociolinguistics is to treat it as binary, 

varying between Present and Absent (or rhotic/r-ful 

and non-rhotic/r-less) [1, 3, 6, 12, 17]. Under this 

approach, inter- and intraspeaker variation in /r/ is 

represented in terms of proportions, with speakers 

and varieties said to be more rhotic if a greater 

proportion of their /r/ tokens are Present. However, 

inter-coder reliability is notoriously low for rhoticity, 

even among phoneticians [13, 27]. 

In cases where sociolinguistic research treats /r/ as 

continuous, it is typically in terms of F3 minimum, 

with lower F3 corresponding to a greater constriction 

and thus a ‘stronger’ /r/ [8, 15]. By contrast, 

approaches to English /r/ in acoustic phonetics have 

found a complex array of cues to rhoticity: a greater 

lag between F3 minimum and the end of the token 

[14], longer duration and lower F2 [22], spectral 

information below F3 [9], and a lack of frication noise 

immediately after the token [23]. Complicating 

matters further, rhoticity subsumes distinct 

articulatory strategies with different acoustic 

consequences [13, 28]. In sum, despite widespread 

intuition that /r/ is not a categorical variable, it is not 

at all clear that F3 is the best means for modelling 

continuous variation in /r/. Indeed, it is likely that the 

acoustic complexity and heterogeneity of /r/ is in part 

what makes /r/ so difficult to code reliably. 

We trained a random forest classifier on tokens of 

variable rhoticity in natural speech that were coded as 

/r/ Present or Absent. The classifier then used 180 

acoustic measurements contained in the training set to 

decide whether uncoded /r/s in natural speech should 

be coded as Present or Absent; the model produces, 

for each token, a probability that it contains /r/ 

(classifier probability). Tokens that are assigned high 

probabilities by the classifier strongly resemble, in 

multiple ways, tokens of /r/ known to be Present. 

Tokens with lesser probabilities contain fewer 

properties that are typical of the acoustic signature of 

/r/. Our initial goal was to efficiently produce binary 

codes for a large dataset, allowing us to proceed more 

quickly with a robust sociolinguistic analysis. This 

paper explores the additional possibility that the 

random forest model can also be used as a composite 

measure of the gradient presence of /r/. We test the 

hypothesis that, in addition to providing a binary 

categorization for uncoded data, classifier probability 

may be a useful and meaningful index of gradient 

rhoticity in its own right. Our research questions are: 

1. What is the relationship between classifier 

probabilities and human judgments of 

English non-prevocalic /r/? 

2. How does classifier probability compare to 

individual acoustic measures of /r/ in 

predicting human judgments of /r/? 

In order to explore these questions, we selected 60 

classifier-coded tokens for a perceptual task in which 

11 phonetically trained listeners judged tokens as 

Present or Absent and rated their confidence. We 

performed statistical modelling of these judgments 

and confidence ratings to determine to what extent 

classifier probability and individual acoustic 

measures predicted human responses to /r/; we find 

significant agreement between classifier probability 

and human judgments. We thus see this method as 

addressing both a practical need (automated 



annotation of large data sets) and a theoretical need 

(determining which acoustic properties best 

characterise /r/). 

2. RANDOM FOREST CLASSIFIER 

Previous research has found variable rhoticity in the 

Southland region of New Zealand [1]. Our corpus of 

Southland English includes over 83 hours of 

sociolinguistic and oral history interviews from 

speakers born 1868-1998. It includes several 

thousand /r/ tokens that were hand-coded by a single 

researcher. We fit a random forest classifier to these 

hand-coded tokens.  

Random forests are an extension of classification 

and regression trees, which recursively partition data 

into successively smaller subsets at each tree node by 

finding the independent variable that minimises 

variation in the subbranches under the node. 

Individual trees select from among random subsets of 

independent variables at each split. The ensembled 

trees in a forest are averaged to a consensus on which 

predictors are most important [24]. Unlike many 

modelling techniques, random forests do not suffer 

when predictors are collinear [16, 21]. Random forest 

models can also perform classification on unseen data 

[see e.g. 19].  

Our random forest classifier was trained on 5,355 

hand-coded tokens of non-prevocalic /r/ from 28 

individual speakers (89–229 tokens per speaker; 

28.3% of all tokens coded as present). This training 

set excluded tokens for which there were missing 

measurements, or for which F3 measurements at the 

25%, 35%, 75%, or 80% timepoints were outliers.  

For each token, we extracted 180 acoustic 

measures across the sequence of vowel plus possible 

/r/ (e.g., start, nurse). Our choice of features was 

guided by two aims: producing a well-performing 

classifier, and resolving persistent uncertainty about 

the acoustic features that best characterise /r/ [e.g., 8, 

9, 14, 22, 23, 28]. The latter aim also meant that we 

did not introduce any social factors or linguistic 

factors above the level of phonetics (e.g., speaker 

gender, vowel phoneme, stress) into the classifier; we 

also wanted to avoid the classifier over-learning 

extra-phonetic features, as these features may have 

applied in different degrees to the training vs. test 

sets. This second aim is also why we did not use 

features like mel-frequency cepstral coefficients that 

are popular in the fields of signal processing and 

speech recognition [e.g., 25], opting instead for 

measures that have more currency in acoustic 

phonetics. The measures were: 

● Formant measurements at 13 timepoints. 

These measurements were normalised by 

subtracting the speaker’s mean word-initial /r/ 

midpoint measurement for that formant from 

the raw measurement. 

● Formant maxima and minima (speaker 

normalised) and the normalised time at which 

maxima and minima were found 

● Formant ranges (raw maximum minus raw 

minimum), and slopes (range divided by 

normalised time) 

● Differences between raw formant values at 13 

timepoints (e.g., differences between F2 and 

F1, F3 and F1) 

● Formant bandwidths at 13 timepoints 

● Pitch maxima and minima, normalised 

timepoints of maxima and minima, pitch 

range, and pitch slope 

● Amplitudes at F3 maxima and minima 

● Token duration, z-scored by speaker. 

These measures were entered into a random forest 

in R using the packages ranger and caret [10, 18, 26]. 

Binary /r/ was the dependent variable. This forest 

included 1,000 trees, tested 13 variables at each node, 

used a Gini splitting rule, had no minimum node size 

restriction, and measured variable importance via the 

Gini index.  

To test classifier performance against hand-codes, 

classifier probabilities were converted to binary codes 

by specifying a probability cutoff at which tokens 

would be coded Present. Preliminary testing found 

that accuracy was optimised by using a probability 

cutoff at 0.579065. Within the training set, prediction 

accuracy was assessed via cross-validation; in four 

rounds, the training set was split into training and test 

subsets via the 0.632 bootstrap estimator and SMOTE 

sampling to resolve the imbalance in Present and 

Absent classes [4, 5]. This procedure found a 

prediction accuracy of 87.9%, which compares 

favourably with human coders’ 84–86% inter-rater 

reliability for /r/ [13]. 

We then used the classifier to predict 32,099 

additional tokens of non-prevocalic /r/ in our corpus. 

The classifier coded 19.8% of these tokens as Present, 

with a mean classifier probability of 0.40. 

3. JUDGMENT TASK 

3.1. Stimuli and task 

Stimuli were selected from among classifier-coded 

tokens to represent a range of classifier probabilities 

and to control for additional independent factors that 

affect /r/ in this community. We restricted our stimuli 

to tokens uttered by men in stressed syllables in 

content words, with preceding NURSE and a following 

sonorant. To control for any effects of metrical 

structure, we selected only monosyllables. Sixty such 

tokens were selected to span the range of classifier 



probabilities, with 32 tokens coded Absent and 28 

coded Present by the classifier. Stimuli were created 

by extracting the relevant word from the audio file, 

resampling the word to 22050 Hz, and scaling the 

word’s intensity to 70 Pa. 

Eleven phonetically trained listeners were asked to 

judge each stimulus as Present or Absent and to rate 

their confidence on a scale from 1 to 5. Listeners 

heard each stimulus word twice, with a 750ms buffer 

between repetitions. Listeners performed the task 

with headphones on individual computers. All 

listeners were proficient English users who lived in 

NZ at the time of the experiment. Five listeners self-

reported speaking English with rhotic accents, six 

with non-rhotic accents; four listeners self-reported as 

non-native speakers. 

3.2. Analysis 

Listeners’ proportion of Present judgments was 

highly variable (M = 0.5038, SD = 0.1897, range = 

0.13–0.87). Mixed-effects modelling was performed 

in R [18]; judgments data (binary) were modelled via 

logistic regression in the lme4 package [2], and 

confidence data (continuous) via linear regression 

with Satterthwaite approximations for degrees of 

freedom in the lmerTest package [11, 20]. For both 

judgments and confidence, the baseline model 

included classifier probability and following segment 

(/l, m, n/) as fixed effects, with random effects for 

listener and stimulus; additionally for confidence, the 

stimulus random effect was nested within word and 

there was a random slope of classifier probability by 

listener. Confidence was modelled separately for 

stimuli judged Present (n = 332) vs. Absent (n = 327). 

We also modelled classifier probability as a 

restricted cubic spline with three knots in the R 

package rms [7], but these were never significantly 

better than the baseline models. Finally, to address 

research question 2, we ran models of judgments 

where classifier probability was replaced by 

individual acoustic measures; since these models 

were not nested within the baseline model, their log-

likelihoods were compared to that of the baseline.  

4. RESULTS 

4.1. Stimuli and task 

The baseline model of judgments revealed a 

significant positive effect of classifier probability on 

human judgments (β = 3.73, z = 5.91, p < .0001), 

indicating that stimuli with greater classifier 

probabilities were more likely to be judged Present; 

this relationship is evident in Figure 1 below. 

Following segment was not significant (ps > .60). 

This baseline model proved to be the best model of 

human judgments. The model with a restricted cubic 

spline for classifier probability failed to significantly 

improve the model fit indicating a linear rather than 

nonlinear relationship (χ²[1] = 0.02, p = 0.89).  

Figure 1: Classifier probability vs. human 

judgments for each stimulus (dots), with fitted 

effects line and 95% confidence band from best 

model of judgments. 

  

4.2. Confidence 

The baseline model of confidence for stimuli judged 

Present revealed a significant positive effect of 

classifier probability on confidence ratings (β = 1.51, 

t[14.63] = 3.14, p < .01), indicating that listeners were 

more confident in judging stimuli with greater 

classifier probabilities as Present. However, in the 

baseline model of confidence for stimuli judged 

Absent, classifier probability had no significant effect 

on confidence ratings (β = −0.28, t[9.60] = −0.68, p = 

.51), indicating that listeners’ confidence when 

judging stimuli as Absent was not related to classifier 

probability. This relationship is evident in Figure 2. 
  



Figure 2: Classifier probability vs. mean 

confidence rating for stimuli judged Absent vs. 

Present (darker dots received more judgments), with 

fitted effects lines and 95% confidence bands. 

 

4.3. Individual measures 

To test whether classifier probability improves on 

individual acoustic measures, we ran three additional 

models of judgments, where classifier probability 

was replaced by (z-scored) individual acoustic 

measures: raw and speaker-normalized F3 minimum; 

and F3-F1 at 60% of the token’s duration (the top-

ranked variable in importance in the classifier). In all 

of these models, the individual measure significantly 

affected human judgments in the expected (negative) 

direction (ps < .005). However, the model with 

classifier probability as the main predictor 

outperformed them all (classifier log-likelihood: 

−383.72, individual measures: −387.8–−394.39). 

Of course, the stimulus sample was chosen to 

systematically represent a range of classifier 

probabilities, while we did not specifically sample for 

F3 minimum and other individual measurements. 

However, repeating the above comparisons with 

subsamples to match for distribution shapes across 

different predictors still points to the superiority of 

the classifier model (classifier log-likelihood: 

−151.56, individual measures: −160.50–−158.91). 

5. DISCUSSION 

Predictions from a random forest classifier trained on 

binary coded data can accurately predict gradient 

responses of human listeners.  

This gradience is seen in two ways. First, while 

listeners varied substantially in the likelihood of 

hearing an /r/, the classifier was able to predict their 

behaviour as a group (cf. figure 1). And second, when 

individual listeners did hear an /r/ as Present, the 

classifier was able to predict how confident they were 

in that judgement. This was not true when they coded 

the /r/ as Absent. That is, listeners tend to hear 

different degrees of /r/ presence more clearly than 

they hear different degrees of /r/ absence. 

These results suggest several important 

implications for sociolinguistic and phonetic studies 

of /r/. First, they shed some light on the acoustic 

complexity of /r/ by indicating individual acoustic 

cues that best predict humans’ binary classification of 

/r/. The difference between F3 and F1 shortly after the 

midpoint emerged as the cue that contributed to 

classifier performance most. However, listener 

behaviour was best predicted not by any individual 

acoustic cue, but by the classifier probability, which 

was able to consider a range of acoustic properties. 

The percept of an /r/ is almost certainly influenced by 

a conglomerate of acoustic properties - and no 

individual property may be reliably present across all 

tokens. While our human listeners vary considerably 

in the degree to which they hear an /r/ on any 

occasion, a model based on a collection of acoustic 

cues can predict their group responses, and their 

confidence in judging /r/ presence, more accurately 

than any individual acoustic cue.  

Second, the significant correlation between 

classifier probability and human judgments further 

validates the use of a random forest classifier to 

perform automated coding of /r/. Together with the 

classifier’s high rates of prediction accuracy (as 

demonstrated by cross-validation within training 

data), these experimental results provide validation of 

the method. This is methodologically welcome, given 

that the categorical coding of /r/ (and other 

sociolinguistic variables) is a time-consuming task 

that represents a bottleneck in the process of carrying 

out sociophonetic research. Further, while individual 

listeners appear to vary considerably in the degree to 

which they ‘hear’ /r/, probabilities from a model 

based on a single listener can capture group patterns 

accurately. A single listener's binary ratings can 

therefore be combined with the associated acoustics 

to generate gradient predictions which can accurately 

capture how a wider community would perceive the 

tokens. This gradient metric therefore seems likely to 

be a much more reliable measure of /r/ presence than 

the individual rater's binary ratings alone  

Finally, the fact that classifier probability and 

human judgments exhibit a linear relationship adds 

weight to the interpretation of /r/ as an inherently 

gradient, rather than binary sociolinguistic variable. 

Listeners hear /r/ as present to different degrees, and 

this variability correlates well with a token’s acoustic 

properties. 
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