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ABSTRACT 
 

Can infants learn consonant categories from hypo-
articulated infant-directed speech? This question was 
addressed with learnability analyses on a previously 
published corpus of the Nepali four-way voicing 
contrast [4]. Both a supervised (Discriminant 
Analysis) and an unsupervised (Gaussian Mixture 
Model) learner successfully learned the voiceless-
aspirated, voiceless-unaspirated, and voiced-
unaspirated stop. Neither mechanism could learn the 
voiced-aspirated category from the lead- and lag-time 
distributions. Implications are discussed for infants' 
acquisition of the Nepali four-way contrast, language 
change, and their relationship. 
Keywords: Infant-directed speech; Learnability; 
Nepali; Stop-voicing contrast 

1. INTRODUCTION 

The acoustic speech sound distributions in infants' 
input undisputedly play a crucial role in infants' 
perceptual attunement to native-language consonant 
and vowel contrast [25; 20]. Attunement may be 
aided by hyper-articulated input, i.e., enhanced mean 
distances between the acoustic categories [17]. 
However, not all parents hyper-articulate, with hypo-
articulation being frequently attested as well [3; 8; 
18]. This raises questions about the learnability of 
hypo-articulated input.  

A recently attested case of hypo-articulated input 
to infants is the Nepali four-way voicing contrast [3]. 
Nepali, like many other Indo-Aryan languages, 
canonically contrasts four voicing categories for 
every obstruent place of articulation [1] (Fig. 1). Such 
four-way contrasts cannot be described using voice-
onset time. Rather, the voiced-voiceless contrast is 
canonically cued by the presence versus absence of 
lead time - the onset of vocal fold vibration before the 
burst; the aspirated-unaspirated contrast is 
canonically cued by the duration of lag time - the 
delay between the burst and the onset of the vowel 
[17] (Fig. 1). Nepali mothers speaking to their infants 
in so-called infant-directed speech (IDS) reduce the 
lead-time contrast between voiced and voiceless stops 
and shorten the lag time of all their stops [3]. The 
present study addresses the learnability ramifications 
of this hypo-articulation. 

A complicating issue with respect to the Nepali 
four-way voicing contrast is the potential instability 

Figure 1: Waveforms (top), spectrograms (bottom), 
and annotation of canonical tokens of the Nepali 
four-way stop-voicing contrast. 

 
 

of the voiced-aspirated obstruents. A consideration of 
other Indo-Aryan languages finds, for example, that 
the voiced-aspirated stop has disappeared from 
Kashmiri [4] and has been replaced by a tonal contrast 
in Punjabi [13; 15]. Within Nepali, the aspiration of 
voiced-aspirated obstruents is variably produced for 
stops in intervocalic and word-final position [17], and 
completely replaced by a lowered F0 and increased 
breathiness for affricates [5]. Yet, Nepali is said to 
still have the canonical four-way contrast word-
initially [17]. The present study will assess whether 
the lead- and lag-time distributions from hypo-
articulated IDS support the acquisition of all four 
stop-voicing categories in highly common words with 
velars. 

The learnability of the Nepali four-way voicing 
contrast will be addressed in two types of 
computational learnability analyses, corresponding to 
two broad hypotheses about infants' perceptual 
attunement. The first hypothesis is that infants have 
access to bottom-up acoustic as well as top-down 
lexical information to guide their perceptual 
attunement [11; 23]. This supervised learning 
hypothesis will be implemented using a Discriminant 
Analysis (DA), which is provided with the input 
tokens’ lead- and lag times as well as their category 
membership. The second hypothesis is that infants 
only have access to bottom-up acoustic information 
[19]. This unsupervised learning hypothesis will be 
implemented using Gaussian Mixture Models 
(GMMs), which estimate the multivariate Gaussian 
category structure underlying the observed 
continuous distributions. The results from both sets of 
analyses will answer the question to what extent the 
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Nepali four-way voicing contrast is learnable from 
the lead- and lag-time distributions in Nepali mothers' 
hypo-articulated IDS. 

2. METHODS 

2.1. Corpus 

The present study uses a corpus first presented in [3]. 
Here we repeat key information for interpreting the 
present results, and minor deviations from [3] in 
token selection. 

2.1.1. Participants & Procedure 

Participants were 16 female native speakers of Nepali 
and their infant (aged 10-18 months). Mothers were 
born and lived at least until puberty in Nepal. Dyads 
lived in Sydney where the recordings took place. 

Mother-infant dyads participated in a play session 
during which the mother spoke to her infant in IDS 
about pictures of a hairpin /ka.ʈa/, meal /kʰa.na/, 
bullock cart /ɡa.ɖa/, and neck /ɡʱa.ʈi/. 

2.1.2. Acoustic measurements and token selection 

Tokens of the four target words produced in either 
isolation or utterance-initial position were manually 
annotated for lead time (from the onset of prevoicing 
to the burst) and lag time (from the burst to the onset 
of clear F2 in the vowel; Fig. 1). Tokens were 
excluded if they contained external sound overlap, an 
atypical voice quality, or case marking. [3] then 
excluded any statistical outliers, to meet their analysis 
assumptions. The present study included those 
tokens, as outliers were confirmed to be correctly 
measured and thus form part of the input. 

The analyses reported here include the 935 tokens 
produced in IDS (/kʰ/=297; /k/=282; /ɡʱ/=160; 
/ɡ/=196). All analyses are performed on the natural 
logarithms of lead and lag time in milliseconds. As 
the logarithmic transformation of 0 lead times 
rendered impossible values, these were manually re-
set to 0. For the visualizations, jitter around 0 has 
been added. 

2.2. Discriminant analysis 

A linear DA was performed using the lda function in 
the MASS package [24] of R [22]. The four stops were 
the classes, and the scaled and centred natural 
logarithms of lead and lag time were the continuous 
predictors. A DA computes discriminant functions, to 
maximize the ratio of the variation between and 
within the classes across the predictors. Discriminant 
scores per token can be computed and converted into 
DA-predicted class memberships. These can be 
compared to the actual targets using a confusion 
matrix, to assess model success. 

2.3. Gaussian Mixture Modelling 

The parameters of the multivariate Gaussian 
distributions that are most likely to have generated the 
lead- and lag-time were estimated using the 
Expectation-Maximization algorithm [7], using the 
Mclust function in the mclust package [12] of R [22]. 
The parameters to be estimated for each multivariate 
distribution in these GMMs are the means, 
covariances, and mixing proportions. A further GMM 
parameter is the number of categories. Although 
language-learning infants need to infer this number 
from their input, learnability simulations with EM 
GMM typically pre-set the number of categories [2; 
6]. For reasons to become apparent when the DA 
results are presented, GMM analyses were conducted 
for four as well as three categories. Model 
comparisons with the Bayesian Information Criterion 
[22] were employed to establish whether the model 
with three or four categories is to be preferred, and 
thus whether the input is compatible with Nepali-
learning infants acquiring three or four stop-voicing 
categories. 

The GMM parameters, once estimated, can be 
used to assign corpus tokens to the acquired 
categories, which can be labelled after the most 
prevalent target category among the tokens 
categorized into a GMM category. Confusion 
matrices comparing tokens' target and GMM-
assigned category memberships were used to evaluate 
model success. 

3. RESULTS 

3.1. Visual data inspection 

Fig. 2 displays the distribution of IDS tokens across 
lead and lag time. The canonical description of the 
Nepali four-way voicing contrast led us to expect four 
distinct clusters of tokens: the three ellipses in Fig. 2 
and a fourth cluster of voiced aspirated tokens 
produced with lead-time as well as long lag time. 
However, only a few voiced-aspirated tokens occupy 
this area of the acoustic space, with the remaining 
tokens broadly falling within one of the other three 
categories. 

3.2. Discriminant Analysis 

The first discriminant function of the DA captured 
76.9% of the between-class variance, with 
coefficients for lead time (-1.244) and lag time 
(1.165) having opposite signs but almost equal sizes. 
The DA was at least 89% correct in classifying the 
target voiceless-aspirated, voiceless-unaspirated, and 
voiced-unaspirated tokens (Table 2), confirming their 
visually observed separability in the lead-time/lag-
time space. In contrast, the DA was only 1% correct 
in categorising the target voiced-aspirated tokens, and 



Figure 2: Tokens in lead- and lag time acoustic space. 
Ellipses indicate 95% normal confidence intervals around 
voiceless aspirated, voiceless unaspirated, and voiced 
unaspirated tokens. 

 

 
 
Table 1: Confusion matrix of the Target categories 
and the DA-assigned categories. 

 
  DA-assigned 

category 
  kh k ɡʱ ɡ 

Target 
 

kh 95% 5% 0% 0% 
k 4% 96% 0% 1% 
ɡʱ 3% 41% 1% 52% 
ɡ 0% 10% 2% 89% 

 
largely assigned them to the voiceless and voiced 
unaspirated categories. 

3.3. Gaussian Mixture Modelling 

Since Nepali is described as having a four-way stop-
voicing contrast, whereas the visual inspection and 
DA analyses suggest a 3-way contrast, two GMMs 
were fit: one with four, and the other with three 
categories. Model comparison indicated that the 3-
category model (BIC=-2691.114) was preferred over 
the 4-category model (BIC=-2352.859).  

The 3-category GMM (displayed in Fig. 3) and the 
4-category GMM were nearly identical in terms of 
their voiceless-aspirated and voiced-unaspirated 
categories. The models differed in that the 3-category 
model detected one voiceless-unaspirated category, 
whereas the 4-category model detected two 
categories in that region. Critically, neither model 
detected the voiced-aspirated category. 
The three categories learned by the 3-category model 
were highly consistent with the target categories, as 
shown by the over 90% correct classifications of the 
voiced-unaspirated, voiceless- unaspirated, and 
voiced-aspirated tokens. The 4-category model 
performed considerably worse only for the 'split' 
voiceless-unaspirated category (results not displayed 
due to space constraints). Both models distributed the  

Figure 3: Category memberships as assigned by the 
3-category GMM (grey-scale coded, see legend). 
Target stop-voicing is shape coded (see Fig. 2 
legend). 
 

 
 
Table 2: Confusion matrix of the Target categories 
and the 3-category GMM-assigned categories. 

 
  GMM-assigned 

category 
  kh k ɡ 

Target 
 

kh 92% 8% 0% 
k 1% 99% 0% 
ɡʱ 4% 43% 53% 
ɡ 0% 10% 90% 

 
voiced-aspirated targets across their voiceless- and 
voiced-unaspirated categories. 

4. DISCUSSION 

The present study used computational analyses to 
investigate whether Nepali-learning infants could 
acquire the four-way voicing contrast from the lead-
and lag-time distributions in Nepali IDS, which is 
hypo-articulated [3]. Both supervised (DA) and 
unsupervised (GMM) learning simulations found that 
Nepali IDS supports the acquisition of three, but not 
the fourth (voiced-aspirated) category. 

The apparent reduction of the Nepali four-way 
system to a three-way contrast between voiced-
unaspirated, voiceless-unaspirated, and voiceless-
aspirated stops, conforms to the change observed in 
several other Indo-Aryan languages [4; 13]. And 
although some instability of the Nepali voiced-
aspirated obstruents has been documented previously 
[5; 17], the present results are to our knowledge the 
first suggestion that word-initial stops may no longer 
be realized with canonical prevoicing and aspiration. 

The voiced-aspirated stops in this study were all 
elicited utterance-initially in a single word (neck-
/ɡʱa.ʈi/), yet variably realized with the lead- and lag 
time properties of all three other categories. This 
suggests that speakers of Nepali may still have a 
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somewhat distinct representation of the voiced-
aspirated stop. Further research is needed to establish 
whether or not listeners reliably identify the voiced-
aspirated stop, which would provide evidence for the 
presence of other cues. Primary cues to consider are 
the breathiness and F0 of the following vowel, which 
signal voiced-aspirated affricates in Nepali and stops 
in Punjabi, respectively [5, 13]. And if a new cue to 
the voiced-aspirated stop is found, its impact on the 
learnability of the Nepali four-way obstruent series 
would need to be considered. 

The other three categories were successfully 
learned by the computational models, despite the 
hypo-articulated acoustic contrast between voiced 
and voiceless stops in Nepali IDS [3]. Previous 
computational work had suggested that the 
learnability of segmental contrasts is improved by 
IDS hyper-articulation [6] or clearly articulated 
tokens under focus [2]. The present findings, 
resonating the conclusions from [9], show that hypo-
articulation doesn’t always equate with low 
learnability. 

These three learnable stops were successfully 
acquired by the supervised (DA) as well as the 
unsupervised (GMM) model. These findings could be 
taken as support for bottom-up theories of perceptual 
attunement [19], suggesting that top-down 
information may be more important for the 
acquisition of vowels [11] rather than consonants. 
However, our models were only provided with tokens 
of a single word, which could be considered as a form 
of top-down information. Moreover, the 
unsupervised learning model was provided with the 
correct number of categories, while real infants have 
to infer that number from the input. When our GMMs 
were required to estimate the number of categories 
from the data, they found up to nine categories, 
possibly due to their strict parametric assumptions. 
Simulations with data from multiple words using non-
parametric models will be required to fully explore 
the power of unsupervised learning for perceptual 
attunement to consonants. 

The learnability of three stop-voicing categories in 
Nepali, combined with the unlearnable voiced-
aspirated stop, raises critical questions about how real 
infants and children acquire the Nepali voicing 
system. If unsupervised learning from the acoustic 
input distributions lays the foundation for infants' 
early phonological systems [19], Nepali-learning 
infants may only acquire three categories. If the 
lexicon is involved in perceptual attunement [11; 23], 
the free variation displayed by the voiced-aspirated 
stops may be sufficient for infants to also acquire this 
fourth category. However, one could also hypothesize 
that infants and children regularize variation in their 
language input [14] and are thus instrumental to the 
disappearance of the voiced-aspirated stops. 

The extent to which the voiced-aspirated stop will 
disappear from Nepali possibly also depends on the 
impact of orthography on first-language phonology. 
The voiced aspirated stops are represented with 
separate graphemes in the Devanagari script that is 
used for Nepali. Orthography can be a source of 
lexical context for second-language learners [10], and 
literate native speakers of Nepali sometimes 
introduce spelling-based contrasts in their 
pronunciations [17]. Both perception and production 
research with Nepali-learning infants and children 
before, during, and after the onset of literacy is thus 
required to assess the acquisition of the four-way 
voicing system, and the impact of first-language 
learning mechanisms and orthography on the 
disappearance and maintenance of phonological 
contrasts. 

In any further research on the Nepali obstruent 
voicing, several limitations of the present study will 
need to be overcome. Firstly, only velar stops were 
elicited using only one word per segment. Moreover, 
the speakers in the present study were part of the 
Nepali diaspora at the time of the recordings. Future 
research thus needs to establish to what extent the 
present findings generalize across words, to other 
places of articulation, and to speakers still residing in 
Nepal. Further extensions to this work would also 
need to consider the frequency and functional load of 
the voiced-aspirated stop – data that are currently 
difficult to provide due to limited availability of 
searchable dictionaries and corpora of Nepali. Such 
work would shed important light on early 
phonological acquisition in the face of unstable 
phonetic realizations. 
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